mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
11 KiB
276 lines
11 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/core/ocl.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class DNNTestNetwork : public TestWithParam <tuple<DNNBackend, DNNTarget> > |
|
{ |
|
public: |
|
dnn::Backend backend; |
|
dnn::Target target; |
|
|
|
DNNTestNetwork() |
|
{ |
|
backend = (dnn::Backend)(int)get<0>(GetParam()); |
|
target = (dnn::Target)(int)get<1>(GetParam()); |
|
} |
|
|
|
void processNet(const std::string& weights, const std::string& proto, |
|
Size inpSize, const std::string& outputLayer = "", |
|
const std::string& halideScheduler = "", |
|
double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
// Create a common input blob. |
|
int blobSize[] = {1, 3, inpSize.height, inpSize.width}; |
|
Mat inp(4, blobSize, CV_32FC1); |
|
randu(inp, 0.0f, 1.0f); |
|
|
|
processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf); |
|
} |
|
|
|
void processNet(std::string weights, std::string proto, |
|
Mat inp, const std::string& outputLayer = "", |
|
std::string halideScheduler = "", |
|
double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) |
|
{ |
|
#ifdef HAVE_OPENCL |
|
if (!cv::ocl::useOpenCL()) |
|
#endif |
|
{ |
|
throw SkipTestException("OpenCL is not available/disabled in OpenCV"); |
|
} |
|
} |
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
l1 = l1 == 0.0 ? 4e-3 : l1; |
|
lInf = lInf == 0.0 ? 2e-2 : lInf; |
|
} |
|
else |
|
{ |
|
l1 = l1 == 0.0 ? 1e-5 : l1; |
|
lInf = lInf == 0.0 ? 1e-4 : lInf; |
|
} |
|
weights = findDataFile(weights, false); |
|
if (!proto.empty()) |
|
proto = findDataFile(proto, false); |
|
|
|
// Create two networks - with default backend and target and a tested one. |
|
Net netDefault = readNet(weights, proto); |
|
Net net = readNet(weights, proto); |
|
|
|
netDefault.setInput(inp); |
|
Mat outDefault = netDefault.forward(outputLayer).clone(); |
|
|
|
net.setInput(inp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty()) |
|
{ |
|
halideScheduler = findDataFile(halideScheduler, false); |
|
net.setHalideScheduler(halideScheduler); |
|
} |
|
Mat out = net.forward(outputLayer).clone(); |
|
|
|
if (outputLayer == "detection_out") |
|
normAssertDetections(outDefault, out, "First run", 0.2, l1, lInf); |
|
else |
|
normAssert(outDefault, out, "First run", l1, lInf); |
|
|
|
// Test 2: change input. |
|
float* inpData = (float*)inp.data; |
|
for (int i = 0; i < inp.size[0] * inp.size[1]; ++i) |
|
{ |
|
Mat slice(inp.size[2], inp.size[3], CV_32F, inpData); |
|
cv::flip(slice, slice, 1); |
|
inpData += slice.total(); |
|
} |
|
netDefault.setInput(inp); |
|
net.setInput(inp); |
|
outDefault = netDefault.forward(outputLayer).clone(); |
|
out = net.forward(outputLayer).clone(); |
|
|
|
if (outputLayer == "detection_out") |
|
normAssertDetections(outDefault, out, "Second run", 0.2, l1, lInf); |
|
else |
|
normAssert(outDefault, out, "Second run", l1, lInf); |
|
} |
|
}; |
|
|
|
TEST_P(DNNTestNetwork, AlexNet) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); |
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
|
Size(227, 227), "prob", |
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : |
|
"dnn/halide_scheduler_alexnet.yml"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, ResNet_50) |
|
{ |
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
|
Size(224, 224), "prob", |
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : |
|
"dnn/halide_scheduler_resnet_50.yml"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, SqueezeNet_v1_1) |
|
{ |
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
|
Size(227, 227), "prob", |
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : |
|
"dnn/halide_scheduler_squeezenet_v1_1.yml"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, GoogLeNet) |
|
{ |
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
|
Size(224, 224), "prob"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, Inception_5h) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); |
|
processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", |
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" : |
|
"dnn/halide_scheduler_inception_5h.yml"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, ENet) |
|
{ |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE) || |
|
(backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16)) |
|
throw SkipTestException(""); |
|
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", |
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : |
|
"dnn/halide_scheduler_enet.yml", |
|
2e-5, 0.15); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); |
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.0007 : 0.0; |
|
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.011 : 0.0; |
|
|
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", |
|
inp, "detection_out", "", l1, lInf); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); |
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0; |
|
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.06 : 0.0; |
|
processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt", |
|
inp, "detection_out", "", l1, lInf); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, SSD_VGG16) |
|
{ |
|
if ((backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) || |
|
(backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) || |
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)) |
|
throw SkipTestException(""); |
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", |
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_coco) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", |
|
Size(368, 368)); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", |
|
Size(368, 368)); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
// The same .caffemodel but modified .prototxt |
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp |
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", |
|
Size(368, 368)); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, OpenFace) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); |
|
processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), ""); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, opencv_face_detector) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); |
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); |
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); |
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", |
|
inp, "detection_out"); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
{ |
|
if (backend == DNN_BACKEND_HALIDE || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); |
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
float l1 = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0; |
|
float lInf = (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) ? 0.07 : 0.0; |
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", |
|
inp, "detection_out", "", l1, lInf); |
|
} |
|
|
|
TEST_P(DNNTestNetwork, DenseNet_121) |
|
{ |
|
if ((backend == DNN_BACKEND_HALIDE) || |
|
(backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL_FP16) || |
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)) |
|
throw SkipTestException(""); |
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "caffe"); |
|
} |
|
|
|
const tuple<DNNBackend, DNNTarget> testCases[] = { |
|
#ifdef HAVE_HALIDE |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL), |
|
#endif |
|
#ifdef HAVE_INF_ENGINE |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU), |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL), |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16), |
|
#endif |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL), |
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL_FP16) |
|
}; |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases)); |
|
|
|
}} // namespace
|
|
|