mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
519 lines
16 KiB
519 lines
16 KiB
#include <iostream> |
|
#include <fstream> |
|
#include <string> |
|
#include <sstream> |
|
#include <iomanip> |
|
#include <stdexcept> |
|
#include "opencv2/ocl/ocl.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
bool help_showed = false; |
|
|
|
class Args |
|
{ |
|
public: |
|
Args(); |
|
static Args read(int argc, char** argv); |
|
|
|
string src; |
|
bool src_is_video; |
|
bool src_is_camera; |
|
int camera_id; |
|
|
|
bool write_video; |
|
string dst_video; |
|
double dst_video_fps; |
|
|
|
bool make_gray; |
|
|
|
bool resize_src; |
|
int width, height; |
|
|
|
double scale; |
|
int nlevels; |
|
int gr_threshold; |
|
|
|
double hit_threshold; |
|
bool hit_threshold_auto; |
|
|
|
int win_width; |
|
int win_stride_width, win_stride_height; |
|
|
|
bool gamma_corr; |
|
}; |
|
|
|
class App |
|
{ |
|
public: |
|
App(const Args& s); |
|
void run(); |
|
|
|
void handleKey(char key); |
|
|
|
void hogWorkBegin(); |
|
void hogWorkEnd(); |
|
string hogWorkFps() const; |
|
|
|
void workBegin(); |
|
void workEnd(); |
|
string workFps() const; |
|
|
|
string message() const; |
|
|
|
// This function test if gpu_rst matches cpu_rst. |
|
// If the two vectors are not equal, it will return the difference in vector size |
|
// Else if will return |
|
// (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels) |
|
double checkRectSimilarity(Size sz, |
|
std::vector<Rect>& cpu_rst, |
|
std::vector<Rect>& gpu_rst); |
|
private: |
|
App operator=(App&); |
|
|
|
Args args; |
|
bool running; |
|
|
|
bool use_gpu; |
|
bool make_gray; |
|
double scale; |
|
int gr_threshold; |
|
int nlevels; |
|
double hit_threshold; |
|
bool gamma_corr; |
|
|
|
int64 hog_work_begin; |
|
double hog_work_fps; |
|
|
|
int64 work_begin; |
|
double work_fps; |
|
}; |
|
|
|
static void printHelp() |
|
{ |
|
cout << "Histogram of Oriented Gradients descriptor and detector sample.\n" |
|
<< "\nUsage: hog_gpu\n" |
|
<< " (<image>|--video <vide>|--camera <camera_id>) # frames source\n" |
|
<< " [--make_gray <true/false>] # convert image to gray one or not\n" |
|
<< " [--resize_src <true/false>] # do resize of the source image or not\n" |
|
<< " [--width <int>] # resized image width\n" |
|
<< " [--height <int>] # resized image height\n" |
|
<< " [--hit_threshold <double>] # classifying plane distance threshold (0.0 usually)\n" |
|
<< " [--scale <double>] # HOG window scale factor\n" |
|
<< " [--nlevels <int>] # max number of HOG window scales\n" |
|
<< " [--win_width <int>] # width of the window (48 or 64)\n" |
|
<< " [--win_stride_width <int>] # distance by OX axis between neighbour wins\n" |
|
<< " [--win_stride_height <int>] # distance by OY axis between neighbour wins\n" |
|
<< " [--gr_threshold <int>] # merging similar rects constant\n" |
|
<< " [--gamma_correct <int>] # do gamma correction or not\n" |
|
<< " [--write_video <bool>] # write video or not\n" |
|
<< " [--dst_video <path>] # output video path\n" |
|
<< " [--dst_video_fps <double>] # output video fps\n"; |
|
help_showed = true; |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
try |
|
{ |
|
if (argc < 2) |
|
printHelp(); |
|
Args args = Args::read(argc, argv); |
|
if (help_showed) |
|
return -1; |
|
App app(args); |
|
app.run(); |
|
} |
|
catch (const Exception& e) { return cout << "error: " << e.what() << endl, 1; } |
|
catch (const exception& e) { return cout << "error: " << e.what() << endl, 1; } |
|
catch(...) { return cout << "unknown exception" << endl, 1; } |
|
return 0; |
|
} |
|
|
|
|
|
Args::Args() |
|
{ |
|
src_is_video = false; |
|
src_is_camera = false; |
|
camera_id = 0; |
|
|
|
write_video = false; |
|
dst_video_fps = 24.; |
|
|
|
make_gray = false; |
|
|
|
resize_src = false; |
|
width = 640; |
|
height = 480; |
|
|
|
scale = 1.05; |
|
nlevels = 13; |
|
gr_threshold = 8; |
|
hit_threshold = 1.4; |
|
hit_threshold_auto = true; |
|
|
|
win_width = 48; |
|
win_stride_width = 8; |
|
win_stride_height = 8; |
|
|
|
gamma_corr = true; |
|
} |
|
|
|
|
|
Args Args::read(int argc, char** argv) |
|
{ |
|
Args args; |
|
for (int i = 1; i < argc; i++) |
|
{ |
|
if (string(argv[i]) == "--make_gray") args.make_gray = (string(argv[++i]) == "true"); |
|
else if (string(argv[i]) == "--resize_src") args.resize_src = (string(argv[++i]) == "true"); |
|
else if (string(argv[i]) == "--width") args.width = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--height") args.height = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--hit_threshold") |
|
{ |
|
args.hit_threshold = atof(argv[++i]); |
|
args.hit_threshold_auto = false; |
|
} |
|
else if (string(argv[i]) == "--scale") args.scale = atof(argv[++i]); |
|
else if (string(argv[i]) == "--nlevels") args.nlevels = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--win_width") args.win_width = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--win_stride_width") args.win_stride_width = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--win_stride_height") args.win_stride_height = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--gr_threshold") args.gr_threshold = atoi(argv[++i]); |
|
else if (string(argv[i]) == "--gamma_correct") args.gamma_corr = (string(argv[++i]) == "true"); |
|
else if (string(argv[i]) == "--write_video") args.write_video = (string(argv[++i]) == "true"); |
|
else if (string(argv[i]) == "--dst_video") args.dst_video = argv[++i]; |
|
else if (string(argv[i]) == "--dst_video_fps") args.dst_video_fps = atof(argv[++i]); |
|
else if (string(argv[i]) == "--help") printHelp(); |
|
else if (string(argv[i]) == "--video") { args.src = argv[++i]; args.src_is_video = true; } |
|
else if (string(argv[i]) == "--camera") { args.camera_id = atoi(argv[++i]); args.src_is_camera = true; } |
|
else if (args.src.empty()) args.src = argv[i]; |
|
else throw runtime_error((string("unknown key: ") + argv[i])); |
|
} |
|
return args; |
|
} |
|
|
|
|
|
App::App(const Args& s) |
|
{ |
|
args = s; |
|
cout << "\nControls:\n" |
|
<< "\tESC - exit\n" |
|
<< "\tm - change mode GPU <-> CPU\n" |
|
<< "\tg - convert image to gray or not\n" |
|
<< "\t1/q - increase/decrease HOG scale\n" |
|
<< "\t2/w - increase/decrease levels count\n" |
|
<< "\t3/e - increase/decrease HOG group threshold\n" |
|
<< "\t4/r - increase/decrease hit threshold\n" |
|
<< endl; |
|
|
|
use_gpu = true; |
|
make_gray = args.make_gray; |
|
scale = args.scale; |
|
gr_threshold = args.gr_threshold; |
|
nlevels = args.nlevels; |
|
|
|
if (args.hit_threshold_auto) |
|
args.hit_threshold = args.win_width == 48 ? 1.4 : 0.; |
|
hit_threshold = args.hit_threshold; |
|
|
|
gamma_corr = args.gamma_corr; |
|
|
|
if (args.win_width != 64 && args.win_width != 48) |
|
args.win_width = 64; |
|
|
|
cout << "Scale: " << scale << endl; |
|
if (args.resize_src) |
|
cout << "Resized source: (" << args.width << ", " << args.height << ")\n"; |
|
cout << "Group threshold: " << gr_threshold << endl; |
|
cout << "Levels number: " << nlevels << endl; |
|
cout << "Win width: " << args.win_width << endl; |
|
cout << "Win stride: (" << args.win_stride_width << ", " << args.win_stride_height << ")\n"; |
|
cout << "Hit threshold: " << hit_threshold << endl; |
|
cout << "Gamma correction: " << gamma_corr << endl; |
|
cout << endl; |
|
} |
|
|
|
|
|
void App::run() |
|
{ |
|
std::vector<ocl::Info> oclinfo; |
|
ocl::getDevice(oclinfo); |
|
running = true; |
|
cv::VideoWriter video_writer; |
|
|
|
Size win_size(args.win_width, args.win_width * 2); //(64, 128) or (48, 96) |
|
Size win_stride(args.win_stride_width, args.win_stride_height); |
|
|
|
// Create HOG descriptors and detectors here |
|
vector<float> detector; |
|
if (win_size == Size(64, 128)) |
|
detector = cv::ocl::HOGDescriptor::getPeopleDetector64x128(); |
|
else |
|
detector = cv::ocl::HOGDescriptor::getPeopleDetector48x96(); |
|
|
|
cv::ocl::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, |
|
cv::ocl::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr, |
|
cv::ocl::HOGDescriptor::DEFAULT_NLEVELS); |
|
cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1, |
|
HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS); |
|
gpu_hog.setSVMDetector(detector); |
|
cpu_hog.setSVMDetector(detector); |
|
|
|
while (running) |
|
{ |
|
VideoCapture vc; |
|
Mat frame; |
|
|
|
if (args.src_is_video) |
|
{ |
|
vc.open(args.src.c_str()); |
|
if (!vc.isOpened()) |
|
throw runtime_error(string("can't open video file: " + args.src)); |
|
vc >> frame; |
|
} |
|
else if (args.src_is_camera) |
|
{ |
|
vc.open(args.camera_id); |
|
if (!vc.isOpened()) |
|
{ |
|
stringstream msg; |
|
msg << "can't open camera: " << args.camera_id; |
|
throw runtime_error(msg.str()); |
|
} |
|
vc >> frame; |
|
} |
|
else |
|
{ |
|
frame = imread(args.src); |
|
if (frame.empty()) |
|
throw runtime_error(string("can't open image file: " + args.src)); |
|
} |
|
|
|
Mat img_aux, img, img_to_show; |
|
ocl::oclMat gpu_img; |
|
|
|
// Iterate over all frames |
|
bool verify = false; |
|
while (running && !frame.empty()) |
|
{ |
|
workBegin(); |
|
|
|
// Change format of the image |
|
if (make_gray) cvtColor(frame, img_aux, CV_BGR2GRAY); |
|
else if (use_gpu) cvtColor(frame, img_aux, CV_BGR2BGRA); |
|
else frame.copyTo(img_aux); |
|
|
|
// Resize image |
|
if (args.resize_src) resize(img_aux, img, Size(args.width, args.height)); |
|
else img = img_aux; |
|
img_to_show = img; |
|
|
|
gpu_hog.nlevels = nlevels; |
|
cpu_hog.nlevels = nlevels; |
|
|
|
vector<Rect> found; |
|
|
|
// Perform HOG classification |
|
hogWorkBegin(); |
|
if (use_gpu) |
|
{ |
|
gpu_img.upload(img); |
|
gpu_hog.detectMultiScale(gpu_img, found, hit_threshold, win_stride, |
|
Size(0, 0), scale, gr_threshold); |
|
if (!verify) |
|
{ |
|
// verify if GPU output same objects with CPU at 1st run |
|
verify = true; |
|
vector<Rect> ref_rst; |
|
cvtColor(img, img, CV_BGRA2BGR); |
|
cpu_hog.detectMultiScale(img, ref_rst, hit_threshold, win_stride, |
|
Size(0, 0), scale, gr_threshold-2); |
|
double accuracy = checkRectSimilarity(img.size(), ref_rst, found); |
|
cout << "\naccuracy value: " << accuracy << endl; |
|
} |
|
} |
|
else cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride, |
|
Size(0, 0), scale, gr_threshold); |
|
hogWorkEnd(); |
|
|
|
// Draw positive classified windows |
|
for (size_t i = 0; i < found.size(); i++) |
|
{ |
|
Rect r = found[i]; |
|
rectangle(img_to_show, r.tl(), r.br(), CV_RGB(0, 255, 0), 3); |
|
} |
|
|
|
if (use_gpu) |
|
putText(img_to_show, "Mode: GPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); |
|
else |
|
putText(img_to_show, "Mode: CPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); |
|
putText(img_to_show, "FPS (HOG only): " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); |
|
putText(img_to_show, "FPS (total): " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); |
|
imshow("opencv_gpu_hog", img_to_show); |
|
|
|
if (args.src_is_video || args.src_is_camera) vc >> frame; |
|
|
|
workEnd(); |
|
|
|
if (args.write_video) |
|
{ |
|
if (!video_writer.isOpened()) |
|
{ |
|
video_writer.open(args.dst_video, CV_FOURCC('x','v','i','d'), args.dst_video_fps, |
|
img_to_show.size(), true); |
|
if (!video_writer.isOpened()) |
|
throw std::runtime_error("can't create video writer"); |
|
} |
|
|
|
if (make_gray) cvtColor(img_to_show, img, CV_GRAY2BGR); |
|
else cvtColor(img_to_show, img, CV_BGRA2BGR); |
|
|
|
video_writer << img; |
|
} |
|
|
|
handleKey((char)waitKey(3)); |
|
} |
|
} |
|
} |
|
|
|
|
|
void App::handleKey(char key) |
|
{ |
|
switch (key) |
|
{ |
|
case 27: |
|
running = false; |
|
break; |
|
case 'm': |
|
case 'M': |
|
use_gpu = !use_gpu; |
|
cout << "Switched to " << (use_gpu ? "CUDA" : "CPU") << " mode\n"; |
|
break; |
|
case 'g': |
|
case 'G': |
|
make_gray = !make_gray; |
|
cout << "Convert image to gray: " << (make_gray ? "YES" : "NO") << endl; |
|
break; |
|
case '1': |
|
scale *= 1.05; |
|
cout << "Scale: " << scale << endl; |
|
break; |
|
case 'q': |
|
case 'Q': |
|
scale /= 1.05; |
|
cout << "Scale: " << scale << endl; |
|
break; |
|
case '2': |
|
nlevels++; |
|
cout << "Levels number: " << nlevels << endl; |
|
break; |
|
case 'w': |
|
case 'W': |
|
nlevels = max(nlevels - 1, 1); |
|
cout << "Levels number: " << nlevels << endl; |
|
break; |
|
case '3': |
|
gr_threshold++; |
|
cout << "Group threshold: " << gr_threshold << endl; |
|
break; |
|
case 'e': |
|
case 'E': |
|
gr_threshold = max(0, gr_threshold - 1); |
|
cout << "Group threshold: " << gr_threshold << endl; |
|
break; |
|
case '4': |
|
hit_threshold+=0.25; |
|
cout << "Hit threshold: " << hit_threshold << endl; |
|
break; |
|
case 'r': |
|
case 'R': |
|
hit_threshold = max(0.0, hit_threshold - 0.25); |
|
cout << "Hit threshold: " << hit_threshold << endl; |
|
break; |
|
case 'c': |
|
case 'C': |
|
gamma_corr = !gamma_corr; |
|
cout << "Gamma correction: " << gamma_corr << endl; |
|
break; |
|
} |
|
} |
|
|
|
|
|
inline void App::hogWorkBegin() { hog_work_begin = getTickCount(); } |
|
|
|
inline void App::hogWorkEnd() |
|
{ |
|
int64 delta = getTickCount() - hog_work_begin; |
|
double freq = getTickFrequency(); |
|
hog_work_fps = freq / delta; |
|
} |
|
|
|
inline string App::hogWorkFps() const |
|
{ |
|
stringstream ss; |
|
ss << hog_work_fps; |
|
return ss.str(); |
|
} |
|
|
|
|
|
inline void App::workBegin() { work_begin = getTickCount(); } |
|
|
|
inline void App::workEnd() |
|
{ |
|
int64 delta = getTickCount() - work_begin; |
|
double freq = getTickFrequency(); |
|
work_fps = freq / delta; |
|
} |
|
|
|
inline string App::workFps() const |
|
{ |
|
stringstream ss; |
|
ss << work_fps; |
|
return ss.str(); |
|
} |
|
|
|
double App::checkRectSimilarity(Size sz, |
|
std::vector<Rect>& ob1, |
|
std::vector<Rect>& ob2) |
|
{ |
|
double final_test_result = 0.0; |
|
size_t sz1 = ob1.size(); |
|
size_t sz2 = ob2.size(); |
|
|
|
if(sz1 != sz2) |
|
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1); |
|
else |
|
{ |
|
cv::Mat cpu_result(sz, CV_8UC1); |
|
cpu_result.setTo(0); |
|
|
|
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++) |
|
{ |
|
cv::Mat cpu_result_roi(cpu_result, *r); |
|
cpu_result_roi.setTo(1); |
|
cpu_result.copyTo(cpu_result); |
|
} |
|
int cpu_area = cv::countNonZero(cpu_result > 0); |
|
|
|
cv::Mat gpu_result(sz, CV_8UC1); |
|
gpu_result.setTo(0); |
|
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++) |
|
{ |
|
cv::Mat gpu_result_roi(gpu_result, *r2); |
|
gpu_result_roi.setTo(1); |
|
gpu_result.copyTo(gpu_result); |
|
} |
|
|
|
cv::Mat result_; |
|
multiply(cpu_result, gpu_result, result_); |
|
int result = cv::countNonZero(result_ > 0); |
|
|
|
final_test_result = 1.0 - (double)result/(double)cpu_area; |
|
} |
|
return final_test_result; |
|
|
|
} |
|
|
|
|