mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
14 KiB
334 lines
14 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "calibController.hpp" |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <ctime> |
|
|
|
#include <opencv2/calib3d.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
|
|
double calib::calibController::estimateCoverageQuality() |
|
{ |
|
int gridSize = 10; |
|
int xGridStep = mCalibData->imageSize.width / gridSize; |
|
int yGridStep = mCalibData->imageSize.height / gridSize; |
|
std::vector<int> pointsInCell(gridSize*gridSize); |
|
|
|
std::fill(pointsInCell.begin(), pointsInCell.end(), 0); |
|
|
|
for(std::vector<std::vector<cv::Point2f> >::iterator it = mCalibData->imagePoints.begin(); it != mCalibData->imagePoints.end(); ++it) |
|
for(std::vector<cv::Point2f>::iterator pointIt = (*it).begin(); pointIt != (*it).end(); ++pointIt) { |
|
int i = (int)((*pointIt).x / xGridStep); |
|
int j = (int)((*pointIt).y / yGridStep); |
|
pointsInCell[i*gridSize + j]++; |
|
} |
|
|
|
for(std::vector<cv::Mat>::iterator it = mCalibData->allCharucoCorners.begin(); it != mCalibData->allCharucoCorners.end(); ++it) |
|
for(int l = 0; l < (*it).size[0]; l++) { |
|
int i = (int)((*it).at<float>(l, 0) / xGridStep); |
|
int j = (int)((*it).at<float>(l, 1) / yGridStep); |
|
pointsInCell[i*gridSize + j]++; |
|
} |
|
|
|
cv::Mat mean, stdDev; |
|
cv::meanStdDev(pointsInCell, mean, stdDev); |
|
|
|
return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7); |
|
} |
|
|
|
calib::calibController::calibController() |
|
{ |
|
mCalibFlags = 0; |
|
} |
|
|
|
calib::calibController::calibController(cv::Ptr<calib::calibrationData> data, int initialFlags, bool autoTuning, int minFramesNum) : |
|
mCalibData(data) |
|
{ |
|
mCalibFlags = initialFlags; |
|
mNeedTuning = autoTuning; |
|
mMinFramesNum = minFramesNum; |
|
mConfIntervalsState = false; |
|
mCoverageQualityState = false; |
|
} |
|
|
|
void calib::calibController::updateState() |
|
{ |
|
if(mCalibData->cameraMatrix.total()) { |
|
const double relErrEps = 0.05; |
|
bool fConfState = false, cConfState = false, dConfState = true; |
|
if(sigmaMult*mCalibData->stdDeviations.at<double>(0) / mCalibData->cameraMatrix.at<double>(0,0) < relErrEps && |
|
sigmaMult*mCalibData->stdDeviations.at<double>(1) / mCalibData->cameraMatrix.at<double>(1,1) < relErrEps) |
|
fConfState = true; |
|
if(sigmaMult*mCalibData->stdDeviations.at<double>(2) / mCalibData->cameraMatrix.at<double>(0,2) < relErrEps && |
|
sigmaMult*mCalibData->stdDeviations.at<double>(3) / mCalibData->cameraMatrix.at<double>(1,2) < relErrEps) |
|
cConfState = true; |
|
|
|
for(int i = 0; i < 5; i++) |
|
if(mCalibData->stdDeviations.at<double>(4+i) / fabs(mCalibData->distCoeffs.at<double>(i)) > 1) |
|
dConfState = false; |
|
|
|
mConfIntervalsState = fConfState && cConfState && dConfState; |
|
} |
|
|
|
if(getFramesNumberState()) |
|
mCoverageQualityState = estimateCoverageQuality() > 1.8 ? true : false; |
|
|
|
if (getFramesNumberState() && mNeedTuning) { |
|
if( !(mCalibFlags & cv::CALIB_FIX_ASPECT_RATIO) && |
|
mCalibData->cameraMatrix.total()) { |
|
double fDiff = fabs(mCalibData->cameraMatrix.at<double>(0,0) - |
|
mCalibData->cameraMatrix.at<double>(1,1)); |
|
|
|
if (fDiff < 3*mCalibData->stdDeviations.at<double>(0) && |
|
fDiff < 3*mCalibData->stdDeviations.at<double>(1)) { |
|
mCalibFlags |= cv::CALIB_FIX_ASPECT_RATIO; |
|
mCalibData->cameraMatrix.at<double>(0,0) = |
|
mCalibData->cameraMatrix.at<double>(1,1); |
|
} |
|
} |
|
|
|
if(!(mCalibFlags & cv::CALIB_ZERO_TANGENT_DIST)) { |
|
const double eps = 0.005; |
|
if(fabs(mCalibData->distCoeffs.at<double>(2)) < eps && |
|
fabs(mCalibData->distCoeffs.at<double>(3)) < eps) |
|
mCalibFlags |= cv::CALIB_ZERO_TANGENT_DIST; |
|
} |
|
|
|
if(!(mCalibFlags & cv::CALIB_FIX_K1)) { |
|
const double eps = 0.005; |
|
if(fabs(mCalibData->distCoeffs.at<double>(0)) < eps) |
|
mCalibFlags |= cv::CALIB_FIX_K1; |
|
} |
|
|
|
if(!(mCalibFlags & cv::CALIB_FIX_K2)) { |
|
const double eps = 0.005; |
|
if(fabs(mCalibData->distCoeffs.at<double>(1)) < eps) |
|
mCalibFlags |= cv::CALIB_FIX_K2; |
|
} |
|
|
|
if(!(mCalibFlags & cv::CALIB_FIX_K3)) { |
|
const double eps = 0.005; |
|
if(fabs(mCalibData->distCoeffs.at<double>(4)) < eps) |
|
mCalibFlags |= cv::CALIB_FIX_K3; |
|
} |
|
|
|
} |
|
} |
|
|
|
bool calib::calibController::getCommonCalibrationState() const |
|
{ |
|
int rating = (int)getFramesNumberState() + (int)getConfidenceIntrervalsState() + |
|
(int)getRMSState() + (int)mCoverageQualityState; |
|
return rating == 4; |
|
} |
|
|
|
bool calib::calibController::getFramesNumberState() const |
|
{ |
|
return std::max(mCalibData->imagePoints.size(), mCalibData->allCharucoCorners.size()) > mMinFramesNum; |
|
} |
|
|
|
bool calib::calibController::getConfidenceIntrervalsState() const |
|
{ |
|
return mConfIntervalsState; |
|
} |
|
|
|
bool calib::calibController::getRMSState() const |
|
{ |
|
return mCalibData->totalAvgErr < 0.5; |
|
} |
|
|
|
int calib::calibController::getNewFlags() const |
|
{ |
|
return mCalibFlags; |
|
} |
|
|
|
|
|
//////////////////// calibDataController |
|
|
|
double calib::calibDataController::estimateGridSubsetQuality(size_t excludedIndex) |
|
{ |
|
{ |
|
int gridSize = 10; |
|
int xGridStep = mCalibData->imageSize.width / gridSize; |
|
int yGridStep = mCalibData->imageSize.height / gridSize; |
|
std::vector<int> pointsInCell(gridSize*gridSize); |
|
|
|
std::fill(pointsInCell.begin(), pointsInCell.end(), 0); |
|
|
|
for(size_t k = 0; k < mCalibData->imagePoints.size(); k++) |
|
if(k != excludedIndex) |
|
for(std::vector<cv::Point2f>::iterator pointIt = mCalibData->imagePoints[k].begin(); pointIt != mCalibData->imagePoints[k].end(); ++pointIt) { |
|
int i = (int)((*pointIt).x / xGridStep); |
|
int j = (int)((*pointIt).y / yGridStep); |
|
pointsInCell[i*gridSize + j]++; |
|
} |
|
|
|
for(size_t k = 0; k < mCalibData->allCharucoCorners.size(); k++) |
|
if(k != excludedIndex) |
|
for(int l = 0; l < mCalibData->allCharucoCorners[k].size[0]; l++) { |
|
int i = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 0) / xGridStep); |
|
int j = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 1) / yGridStep); |
|
pointsInCell[i*gridSize + j]++; |
|
} |
|
|
|
cv::Mat mean, stdDev; |
|
cv::meanStdDev(pointsInCell, mean, stdDev); |
|
|
|
return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7); |
|
} |
|
} |
|
|
|
calib::calibDataController::calibDataController(cv::Ptr<calib::calibrationData> data, int maxFrames, double convParameter) : |
|
mCalibData(data), mParamsFileName("CamParams.xml") |
|
{ |
|
mMaxFramesNum = maxFrames; |
|
mAlpha = convParameter; |
|
} |
|
|
|
calib::calibDataController::calibDataController() |
|
{ |
|
|
|
} |
|
|
|
void calib::calibDataController::filterFrames() |
|
{ |
|
size_t numberOfFrames = std::max(mCalibData->allCharucoIds.size(), mCalibData->imagePoints.size()); |
|
CV_Assert(numberOfFrames == mCalibData->perViewErrors.total()); |
|
if(numberOfFrames >= mMaxFramesNum) { |
|
|
|
double worstValue = -HUGE_VAL, maxQuality = estimateGridSubsetQuality(numberOfFrames); |
|
size_t worstElemIndex = 0; |
|
for(size_t i = 0; i < numberOfFrames; i++) { |
|
double gridQDelta = estimateGridSubsetQuality(i) - maxQuality; |
|
double currentValue = mCalibData->perViewErrors.at<double>((int)i)*mAlpha + gridQDelta*(1. - mAlpha); |
|
if(currentValue > worstValue) { |
|
worstValue = currentValue; |
|
worstElemIndex = i; |
|
} |
|
} |
|
showOverlayMessage(cv::format("Frame %zu is worst", worstElemIndex + 1)); |
|
|
|
if(mCalibData->imagePoints.size()) { |
|
mCalibData->imagePoints.erase(mCalibData->imagePoints.begin() + worstElemIndex); |
|
mCalibData->objectPoints.erase(mCalibData->objectPoints.begin() + worstElemIndex); |
|
} |
|
else { |
|
mCalibData->allCharucoCorners.erase(mCalibData->allCharucoCorners.begin() + worstElemIndex); |
|
mCalibData->allCharucoIds.erase(mCalibData->allCharucoIds.begin() + worstElemIndex); |
|
} |
|
|
|
cv::Mat newErrorsVec = cv::Mat((int)numberOfFrames - 1, 1, CV_64F); |
|
std::copy(mCalibData->perViewErrors.ptr<double>(0), |
|
mCalibData->perViewErrors.ptr<double>((int)worstElemIndex), newErrorsVec.ptr<double>(0)); |
|
if((int)worstElemIndex < (int)numberOfFrames-1) { |
|
std::copy(mCalibData->perViewErrors.ptr<double>((int)worstElemIndex + 1), mCalibData->perViewErrors.ptr<double>((int)numberOfFrames), |
|
newErrorsVec.ptr<double>((int)worstElemIndex)); |
|
} |
|
mCalibData->perViewErrors = newErrorsVec; |
|
} |
|
} |
|
|
|
void calib::calibDataController::setParametersFileName(const std::string &name) |
|
{ |
|
mParamsFileName = name; |
|
} |
|
|
|
void calib::calibDataController::deleteLastFrame() |
|
{ |
|
if( !mCalibData->imagePoints.empty()) { |
|
mCalibData->imagePoints.pop_back(); |
|
mCalibData->objectPoints.pop_back(); |
|
} |
|
|
|
if (!mCalibData->allCharucoCorners.empty()) { |
|
mCalibData->allCharucoCorners.pop_back(); |
|
mCalibData->allCharucoIds.pop_back(); |
|
} |
|
|
|
if(!mParamsStack.empty()) { |
|
mCalibData->cameraMatrix = (mParamsStack.top()).cameraMatrix; |
|
mCalibData->distCoeffs = (mParamsStack.top()).distCoeffs; |
|
mCalibData->stdDeviations = (mParamsStack.top()).stdDeviations; |
|
mCalibData->totalAvgErr = (mParamsStack.top()).avgError; |
|
mParamsStack.pop(); |
|
} |
|
} |
|
|
|
void calib::calibDataController::rememberCurrentParameters() |
|
{ |
|
cv::Mat oldCameraMat, oldDistcoeefs, oldStdDevs; |
|
mCalibData->cameraMatrix.copyTo(oldCameraMat); |
|
mCalibData->distCoeffs.copyTo(oldDistcoeefs); |
|
mCalibData->stdDeviations.copyTo(oldStdDevs); |
|
mParamsStack.push(cameraParameters(oldCameraMat, oldDistcoeefs, oldStdDevs, mCalibData->totalAvgErr)); |
|
} |
|
|
|
void calib::calibDataController::deleteAllData() |
|
{ |
|
mCalibData->imagePoints.clear(); |
|
mCalibData->objectPoints.clear(); |
|
mCalibData->allCharucoCorners.clear(); |
|
mCalibData->allCharucoIds.clear(); |
|
mCalibData->cameraMatrix = mCalibData->distCoeffs = cv::Mat(); |
|
mParamsStack = std::stack<cameraParameters>(); |
|
rememberCurrentParameters(); |
|
} |
|
|
|
bool calib::calibDataController::saveCurrentCameraParameters() const |
|
{ |
|
bool success = false; |
|
if(mCalibData->cameraMatrix.total()) { |
|
cv::FileStorage parametersWriter(mParamsFileName, cv::FileStorage::WRITE); |
|
if(parametersWriter.isOpened()) { |
|
time_t rawtime; |
|
time(&rawtime); |
|
char buf[256]; |
|
strftime(buf, sizeof(buf)-1, "%c", localtime(&rawtime)); |
|
|
|
parametersWriter << "calibrationDate" << buf; |
|
parametersWriter << "framesCount" << std::max((int)mCalibData->objectPoints.size(), (int)mCalibData->allCharucoCorners.size()); |
|
parametersWriter << "cameraResolution" << mCalibData->imageSize; |
|
parametersWriter << "cameraMatrix" << mCalibData->cameraMatrix; |
|
parametersWriter << "cameraMatrix_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(0, 4)); |
|
parametersWriter << "dist_coeffs" << mCalibData->distCoeffs; |
|
parametersWriter << "dist_coeffs_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(4, 9)); |
|
parametersWriter << "avg_reprojection_error" << mCalibData->totalAvgErr; |
|
|
|
parametersWriter.release(); |
|
success = true; |
|
} |
|
} |
|
return success; |
|
} |
|
|
|
void calib::calibDataController::printParametersToConsole(std::ostream &output) const |
|
{ |
|
const char* border = "---------------------------------------------------"; |
|
output << border << std::endl; |
|
output << "Frames used for calibration: " << std::max(mCalibData->objectPoints.size(), mCalibData->allCharucoCorners.size()) |
|
<< " \t RMS = " << mCalibData->totalAvgErr << std::endl; |
|
if(mCalibData->cameraMatrix.at<double>(0,0) == mCalibData->cameraMatrix.at<double>(1,1)) |
|
output << "F = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl; |
|
else |
|
output << "Fx = " << mCalibData->cameraMatrix.at<double>(0,0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(0) << " \t " |
|
<< "Fy = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl; |
|
output << "Cx = " << mCalibData->cameraMatrix.at<double>(0,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(2) << " \t" |
|
<< "Cy = " << mCalibData->cameraMatrix.at<double>(1,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(3) << std::endl; |
|
output << "K1 = " << mCalibData->distCoeffs.at<double>(0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(4) << std::endl; |
|
output << "K2 = " << mCalibData->distCoeffs.at<double>(1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(5) << std::endl; |
|
output << "K3 = " << mCalibData->distCoeffs.at<double>(4) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(8) << std::endl; |
|
output << "TD1 = " << mCalibData->distCoeffs.at<double>(2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(6) << std::endl; |
|
output << "TD2 = " << mCalibData->distCoeffs.at<double>(3) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(7) << std::endl; |
|
} |
|
|
|
void calib::calibDataController::updateUndistortMap() |
|
{ |
|
cv::initUndistortRectifyMap(mCalibData->cameraMatrix, mCalibData->distCoeffs, cv::noArray(), |
|
cv::getOptimalNewCameraMatrix(mCalibData->cameraMatrix, mCalibData->distCoeffs, mCalibData->imageSize, 0.0, mCalibData->imageSize), |
|
mCalibData->imageSize, CV_16SC2, mCalibData->undistMap1, mCalibData->undistMap2); |
|
|
|
}
|
|
|