Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

639 lines
23 KiB

Feature detection and description
=================================
.. highlight:: cpp
.. index:: FAST
FAST
--------
.. c:function:: void FAST( const Mat& image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true )
Detects corners using FAST algorithm by E. Rosten (''Machine learning for high-speed corner detection'', 2006).
:param image: The image. Keypoints (corners) will be detected on this.
:param keypoints: Keypoints detected on the image.
:param threshold: Threshold on difference between intensity of center pixel and
pixels on circle around this pixel. See description of the algorithm.
:param nonmaxSupression: If it is true then non-maximum supression will be applied to detected corners (keypoints).
.. index:: MSER
.. _MSER:
MSER
----
.. c:type:: MSER
Maximally-Stable Extremal Region Extractor ::
class MSER : public CvMSERParams
{
public:
// default constructor
MSER();
// constructor that initializes all the algorithm parameters
MSER( int _delta, int _min_area, int _max_area,
float _max_variation, float _min_diversity,
int _max_evolution, double _area_threshold,
double _min_margin, int _edge_blur_size );
// runs the extractor on the specified image; returns the MSERs,
// each encoded as a contour (vector<Point>, see findContours)
// the optional mask marks the area where MSERs are searched for
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const;
};
The class encapsulates all the parameters of MSER (see
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions) extraction algorithm.
.. index:: StarDetector
.. _StarDetector:
StarDetector
------------
.. c:type:: StarDetector
Implements Star keypoint detector ::
class StarDetector : CvStarDetectorParams
{
public:
// default constructor
StarDetector();
// the full constructor initialized all the algorithm parameters:
// maxSize - maximum size of the features. The following
// values of the parameter are supported:
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
// responseThreshold - threshold for the approximated laplacian,
// used to eliminate weak features. The larger it is,
// the less features will be retrieved
// lineThresholdProjected - another threshold for the laplacian to
// eliminate edges
// lineThresholdBinarized - another threshold for the feature
// size to eliminate edges.
// The larger the 2 threshold, the more points you get.
StarDetector(int maxSize, int responseThreshold,
int lineThresholdProjected,
int lineThresholdBinarized,
int suppressNonmaxSize);
// finds keypoints in an image
void operator()(const Mat& image, vector<KeyPoint>& keypoints) const;
};
The class implements a modified version of CenSurE keypoint detector described in
Agrawal08
.. index:: SIFT
.. _SIFT:
SIFT
----
.. c:type:: SIFT
Class for extracting keypoints and computing descriptors using approach named Scale Invariant Feature Transform (SIFT). ::
class CV_EXPORTS SIFT
{
public:
struct CommonParams
{
static const int DEFAULT_NOCTAVES = 4;
static const int DEFAULT_NOCTAVE_LAYERS = 3;
static const int DEFAULT_FIRST_OCTAVE = -1;
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 };
CommonParams();
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave,
int _angleMode );
int nOctaves, nOctaveLayers, firstOctave;
int angleMode;
};
struct DetectorParams
{
static double GET_DEFAULT_THRESHOLD()
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; }
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; }
DetectorParams();
DetectorParams( double _threshold, double _edgeThreshold );
double threshold, edgeThreshold;
};
struct DescriptorParams
{
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; }
static const bool DEFAULT_IS_NORMALIZE = true;
static const int DESCRIPTOR_SIZE = 128;
DescriptorParams();
DescriptorParams( double _magnification, bool _isNormalize,
bool _recalculateAngles );
double magnification;
bool isNormalize;
bool recalculateAngles;
};
SIFT();
//! sift-detector constructor
SIFT( double _threshold, double _edgeThreshold,
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
int _angleMode=CommonParams::FIRST_ANGLE );
//! sift-descriptor constructor
SIFT( double _magnification, bool _isNormalize=true,
bool _recalculateAngles = true,
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
int _angleMode=CommonParams::FIRST_ANGLE );
SIFT( const CommonParams& _commParams,
const DetectorParams& _detectorParams = DetectorParams(),
const DescriptorParams& _descriptorParams = DescriptorParams() );
//! returns the descriptor size in floats (128)
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; }
//! finds the keypoints using SIFT algorithm
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints) const;
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
//! Optionally it can compute descriptors for the user-provided keypoints
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints,
Mat& descriptors,
bool useProvidedKeypoints=false) const;
CommonParams getCommonParams () const { return commParams; }
DetectorParams getDetectorParams () const { return detectorParams; }
DescriptorParams getDescriptorParams () const { return descriptorParams; }
protected:
...
};
.. index:: SURF
.. _SURF:
SURF
----
.. c:type:: SURF
Class for extracting Speeded Up Robust Features from an image. ::
class SURF : public CvSURFParams
{
public:
// c:function::default constructor
SURF();
// constructor that initializes all the algorithm parameters
SURF(double _hessianThreshold, int _nOctaves=4,
int _nOctaveLayers=2, bool _extended=false);
// returns the number of elements in each descriptor (64 or 128)
int descriptorSize() const;
// detects keypoints using fast multi-scale Hessian detector
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints) const;
// detects keypoints and computes the SURF descriptors for them;
// output vector "descriptors" stores elements of descriptors and has size
// equal descriptorSize()*keypoints.size() as each descriptor is
// descriptorSize() elements of this vector.
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints,
vector<float>& descriptors,
bool useProvidedKeypoints=false) const;
};
The class ``SURF`` implements Speeded Up Robust Features descriptor Bay06.
There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints
(which is the default option), but the descriptors can be also computed for the user-specified keypoints.
The function can be used for object tracking and localization, image stitching etc. See the ``find_obj.cpp`` demo in OpenCV samples directory.
.. index:: RandomizedTree
.. _RandomizedTree:
RandomizedTree
--------------
.. c:type:: RandomizedTree
The class contains base structure for ``RTreeClassifier`` ::
class CV_EXPORTS RandomizedTree
{
public:
friend class RTreeClassifier;
RandomizedTree();
~RandomizedTree();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng, int depth, int views,
size_t reduced_num_dim, int num_quant_bits);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng, PatchGenerator &make_patch, int depth,
int views, size_t reduced_num_dim, int num_quant_bits);
// following two funcs are EXPERIMENTAL
//(do not use unless you know exactly what you do)
static void quantizeVector(float *vec, int dim, int N, float bnds[2],
int clamp_mode=0);
static void quantizeVector(float *src, int dim, int N, float bnds[2],
uchar *dst);
// patch_data must be a 32x32 array (no row padding)
float* getPosterior(uchar* patch_data);
const float* getPosterior(uchar* patch_data) const;
uchar* getPosterior2(uchar* patch_data);
void read(const char* file_name, int num_quant_bits);
void read(std::istream &is, int num_quant_bits);
void write(const char* file_name) const;
void write(std::ostream &os) const;
int classes() { return classes_; }
int depth() { return depth_; }
void discardFloatPosteriors() { freePosteriors(1); }
inline void applyQuantization(int num_quant_bits)
{ makePosteriors2(num_quant_bits); }
private:
int classes_;
int depth_;
int num_leaves_;
std::vector<RTreeNode> nodes_;
float **posteriors_; // 16-bytes aligned posteriors
uchar **posteriors2_; // 16-bytes aligned posteriors
std::vector<int> leaf_counts_;
void createNodes(int num_nodes, RNG &rng);
void allocPosteriorsAligned(int num_leaves, int num_classes);
void freePosteriors(int which);
// which: 1=posteriors_, 2=posteriors2_, 3=both
void init(int classes, int depth, RNG &rng);
void addExample(int class_id, uchar* patch_data);
void finalize(size_t reduced_num_dim, int num_quant_bits);
int getIndex(uchar* patch_data) const;
inline float* getPosteriorByIndex(int index);
inline uchar* getPosteriorByIndex2(int index);
inline const float* getPosteriorByIndex(int index) const;
void convertPosteriorsToChar();
void makePosteriors2(int num_quant_bits);
void compressLeaves(size_t reduced_num_dim);
void estimateQuantPercForPosteriors(float perc[2]);
};
.. index:: RandomizedTree::train
RandomizedTree::train
-------------------------
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
Trains a randomized tree using input set of keypoints
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
{Vector of ``BaseKeypoint`` type. Contains keypoints from the image are used for training}
{Random numbers generator is used for training}
{Patch generator is used for training}
{Maximum tree depth}
{Number of dimensions are used in compressed signature}
{Number of bits are used for quantization}
.. index:: RandomizedTree::read
RandomizedTree::read
------------------------
.. c:function:: read(const char* file_name, int num_quant_bits)
Reads pre-saved randomized tree from file or stream
.. c:function:: read(std::istream \&is, int num_quant_bits)
:param file_name: Filename of file contains randomized tree data
:param is: Input stream associated with file contains randomized tree data
{Number of bits are used for quantization}
.. index:: RandomizedTree::write
RandomizedTree::write
-------------------------
.. c:function:: void write(const char* file_name) const
Writes current randomized tree to a file or stream
.. c:function:: void write(std::ostream \&os) const
:param file_name: Filename of file where randomized tree data will be stored
:param is: Output stream associated with file where randomized tree data will be stored
.. index:: RandomizedTree::applyQuantization
RandomizedTree::applyQuantization
-------------------------------------
.. c:function:: void applyQuantization(int num_quant_bits)
Applies quantization to the current randomized tree
{Number of bits are used for quantization}
.. index:: RTreeNode
.. _RTreeNode:
RTreeNode
---------
.. c:type:: RTreeNode
The class contains base structure for ``RandomizedTree`` ::
struct RTreeNode
{
short offset1, offset2;
RTreeNode() {}
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
: offset1(y1*PATCH_SIZE + x1),
offset2(y2*PATCH_SIZE + x2)
{}
//! Left child on 0, right child on 1
inline bool operator() (uchar* patch_data) const
{
return patch_data[offset1] > patch_data[offset2];
}
};
.. index:: RTreeClassifier
.. _RTreeClassifier:
RTreeClassifier
---------------
.. c:type:: RTreeClassifier
The class contains ``RTreeClassifier`` . It represents calonder descriptor which was originally introduced by Michael Calonder ::
class CV_EXPORTS RTreeClassifier
{
public:
static const int DEFAULT_TREES = 48;
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
RTreeClassifier();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
PatchGenerator &make_patch,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
// sig must point to a memory block of at least
//classes()*sizeof(float|uchar) bytes
void getSignature(IplImage *patch, uchar *sig);
void getSignature(IplImage *patch, float *sig);
void getSparseSignature(IplImage *patch, float *sig,
float thresh);
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
int sig_len=176);
static inline uchar* safeSignatureAlloc(int num_sig=1,
int sig_len=176);
inline int classes() { return classes_; }
inline int original_num_classes()
{ return original_num_classes_; }
void setQuantization(int num_quant_bits);
void discardFloatPosteriors();
void read(const char* file_name);
void read(std::istream &is);
void write(const char* file_name) const;
void write(std::ostream &os) const;
std::vector<RandomizedTree> trees_;
private:
int classes_;
int num_quant_bits_;
uchar **posteriors_;
ushort *ptemp_;
int original_num_classes_;
bool keep_floats_;
};
.. index:: RTreeClassifier::train
RTreeClassifier::train
--------------------------
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
Trains a randomized tree classificator using input set of keypoints
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
{Vector of ``BaseKeypoint`` type. Contains keypoints from the image are used for training}
{Random numbers generator is used for training}
{Patch generator is used for training}
{Number of randomized trees used in RTreeClassificator}
{Maximum tree depth}
{Number of dimensions are used in compressed signature}
{Number of bits are used for quantization}
{Print current status of training on the console}
.. index:: RTreeClassifier::getSignature
RTreeClassifier::getSignature
---------------------------------
.. c:function:: void getSignature(IplImage *patch, uchar *sig)
Returns signature for image patch
.. c:function:: void getSignature(IplImage *patch, float *sig)
{Image patch to calculate signature for}
{Output signature (array dimension is ``reduced_num_dim)`` }
.. index:: RTreeClassifier::getSparseSignature
RTreeClassifier::getSparseSignature
---------------------------------------
.. c:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh)
The function is simular to getSignaturebut uses the threshold for removing all signature elements less than the threshold. So that the signature is compressed
{Image patch to calculate signature for}
{Output signature (array dimension is ``reduced_num_dim)``}
{The threshold that is used for compressing the signature}
.. index:: RTreeClassifier::countNonZeroElements
RTreeClassifier::countNonZeroElements
-----------------------------------------
.. c:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10)
The function returns the number of non-zero elements in the input array.
:param vec: Input vector contains float elements
:param n: Input vector size
{The threshold used for elements counting. We take all elements are less than ``tol`` as zero elements}
.. index:: RTreeClassifier::read
RTreeClassifier::read
-------------------------
.. c:function:: read(const char* file_name)
Reads pre-saved RTreeClassifier from file or stream
.. c:function:: read(std::istream& is)
:param file_name: Filename of file contains randomized tree data
:param is: Input stream associated with file contains randomized tree data
.. index:: RTreeClassifier::write
RTreeClassifier::write
--------------------------
.. c:function:: void write(const char* file_name) const
Writes current RTreeClassifier to a file or stream
.. c:function:: void write(std::ostream \&os) const
:param file_name: Filename of file where randomized tree data will be stored
:param is: Output stream associated with file where randomized tree data will be stored
.. index:: RTreeClassifier::setQuantization
RTreeClassifier::setQuantization
------------------------------------
.. c:function:: void setQuantization(int num_quant_bits)
Applies quantization to the current randomized tree
{Number of bits are used for quantization}
Below there is an example of ``RTreeClassifier`` usage for feature matching. There are test and train images and we extract features from both with SURF. Output is
:math:`best\_corr` and
:math:`best\_corr\_idx` arrays which keep the best probabilities and corresponding features indexes for every train feature. ::
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
CvSURFParams params = cvSURFParams(500, 1);
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
storage, params );
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
storage, params );
RTreeClassifier detector;
int patch_width = PATCH_SIZE;
iint patch_height = PATCH_SIZE;
vector<BaseKeypoint> base_set;
int i=0;
CvSURFPoint* point;
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
{
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
base_set.push_back(
BaseKeypoint(point->pt.x,point->pt.y,train_image));
}
//Detector training
RNG rng( cvGetTickCount() );
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
-CV_PI/3,CV_PI/3);
printf("RTree Classifier training...n");
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000,
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
printf("Donen");
float* signature = new float[detector.original_num_classes()];
float* best_corr;
int* best_corr_idx;
if (imageKeypoints->total > 0)
{
best_corr = new float[imageKeypoints->total];
best_corr_idx = new int[imageKeypoints->total];
}
for(i=0; i < imageKeypoints->total; i++)
{
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
int part_idx = -1;
float prob = 0.0f;
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
(int)(point->pt.y) - patch_height/2,
patch_width, patch_height);
cvSetImageROI(test_image, roi);
roi = cvGetImageROI(test_image);
if(roi.width != patch_width || roi.height != patch_height)
{
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
}
else
{
cvSetImageROI(test_image, roi);
IplImage* roi_image =
cvCreateImage(cvSize(roi.width, roi.height),
test_image->depth, test_image->nChannels);
cvCopy(test_image,roi_image);
detector.getSignature(roi_image, signature);
for (int j = 0; j< detector.original_num_classes();j++)
{
if (prob < signature[j])
{
part_idx = j;
prob = signature[j];
}
}
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
if (roi_image)
cvReleaseImage(&roi_image);
}
cvResetImageROI(test_image);
}
..