mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
639 lines
23 KiB
639 lines
23 KiB
Feature detection and description |
|
================================= |
|
|
|
.. highlight:: cpp |
|
|
|
.. index:: FAST |
|
|
|
FAST |
|
-------- |
|
.. c:function:: void FAST( const Mat& image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true ) |
|
|
|
Detects corners using FAST algorithm by E. Rosten (''Machine learning for high-speed corner detection'', 2006). |
|
|
|
:param image: The image. Keypoints (corners) will be detected on this. |
|
|
|
:param keypoints: Keypoints detected on the image. |
|
|
|
:param threshold: Threshold on difference between intensity of center pixel and |
|
pixels on circle around this pixel. See description of the algorithm. |
|
|
|
:param nonmaxSupression: If it is true then non-maximum supression will be applied to detected corners (keypoints). |
|
|
|
.. index:: MSER |
|
|
|
.. _MSER: |
|
|
|
MSER |
|
---- |
|
.. c:type:: MSER |
|
|
|
Maximally-Stable Extremal Region Extractor :: |
|
|
|
class MSER : public CvMSERParams |
|
{ |
|
public: |
|
// default constructor |
|
MSER(); |
|
// constructor that initializes all the algorithm parameters |
|
MSER( int _delta, int _min_area, int _max_area, |
|
float _max_variation, float _min_diversity, |
|
int _max_evolution, double _area_threshold, |
|
double _min_margin, int _edge_blur_size ); |
|
// runs the extractor on the specified image; returns the MSERs, |
|
// each encoded as a contour (vector<Point>, see findContours) |
|
// the optional mask marks the area where MSERs are searched for |
|
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const; |
|
}; |
|
|
|
The class encapsulates all the parameters of MSER (see |
|
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions) extraction algorithm. |
|
|
|
.. index:: StarDetector |
|
|
|
.. _StarDetector: |
|
|
|
StarDetector |
|
------------ |
|
.. c:type:: StarDetector |
|
|
|
Implements Star keypoint detector :: |
|
|
|
class StarDetector : CvStarDetectorParams |
|
{ |
|
public: |
|
// default constructor |
|
StarDetector(); |
|
// the full constructor initialized all the algorithm parameters: |
|
// maxSize - maximum size of the features. The following |
|
// values of the parameter are supported: |
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128 |
|
// responseThreshold - threshold for the approximated laplacian, |
|
// used to eliminate weak features. The larger it is, |
|
// the less features will be retrieved |
|
// lineThresholdProjected - another threshold for the laplacian to |
|
// eliminate edges |
|
// lineThresholdBinarized - another threshold for the feature |
|
// size to eliminate edges. |
|
// The larger the 2 threshold, the more points you get. |
|
StarDetector(int maxSize, int responseThreshold, |
|
int lineThresholdProjected, |
|
int lineThresholdBinarized, |
|
int suppressNonmaxSize); |
|
|
|
// finds keypoints in an image |
|
void operator()(const Mat& image, vector<KeyPoint>& keypoints) const; |
|
}; |
|
|
|
The class implements a modified version of CenSurE keypoint detector described in |
|
Agrawal08 |
|
|
|
.. index:: SIFT |
|
|
|
.. _SIFT: |
|
|
|
SIFT |
|
---- |
|
.. c:type:: SIFT |
|
|
|
Class for extracting keypoints and computing descriptors using approach named Scale Invariant Feature Transform (SIFT). :: |
|
|
|
class CV_EXPORTS SIFT |
|
{ |
|
public: |
|
struct CommonParams |
|
{ |
|
static const int DEFAULT_NOCTAVES = 4; |
|
static const int DEFAULT_NOCTAVE_LAYERS = 3; |
|
static const int DEFAULT_FIRST_OCTAVE = -1; |
|
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 }; |
|
|
|
CommonParams(); |
|
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave, |
|
int _angleMode ); |
|
int nOctaves, nOctaveLayers, firstOctave; |
|
int angleMode; |
|
}; |
|
|
|
struct DetectorParams |
|
{ |
|
static double GET_DEFAULT_THRESHOLD() |
|
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; } |
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; } |
|
|
|
DetectorParams(); |
|
DetectorParams( double _threshold, double _edgeThreshold ); |
|
double threshold, edgeThreshold; |
|
}; |
|
|
|
struct DescriptorParams |
|
{ |
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; } |
|
static const bool DEFAULT_IS_NORMALIZE = true; |
|
static const int DESCRIPTOR_SIZE = 128; |
|
|
|
DescriptorParams(); |
|
DescriptorParams( double _magnification, bool _isNormalize, |
|
bool _recalculateAngles ); |
|
double magnification; |
|
bool isNormalize; |
|
bool recalculateAngles; |
|
}; |
|
|
|
SIFT(); |
|
//! sift-detector constructor |
|
SIFT( double _threshold, double _edgeThreshold, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
//! sift-descriptor constructor |
|
SIFT( double _magnification, bool _isNormalize=true, |
|
bool _recalculateAngles = true, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
SIFT( const CommonParams& _commParams, |
|
const DetectorParams& _detectorParams = DetectorParams(), |
|
const DescriptorParams& _descriptorParams = DescriptorParams() ); |
|
|
|
//! returns the descriptor size in floats (128) |
|
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; } |
|
//! finds the keypoints using SIFT algorithm |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm. |
|
//! Optionally it can compute descriptors for the user-provided keypoints |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
Mat& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
|
|
CommonParams getCommonParams () const { return commParams; } |
|
DetectorParams getDetectorParams () const { return detectorParams; } |
|
DescriptorParams getDescriptorParams () const { return descriptorParams; } |
|
protected: |
|
... |
|
}; |
|
|
|
|
|
.. index:: SURF |
|
|
|
.. _SURF: |
|
|
|
SURF |
|
---- |
|
.. c:type:: SURF |
|
|
|
Class for extracting Speeded Up Robust Features from an image. :: |
|
|
|
class SURF : public CvSURFParams |
|
{ |
|
public: |
|
// c:function::default constructor |
|
SURF(); |
|
// constructor that initializes all the algorithm parameters |
|
SURF(double _hessianThreshold, int _nOctaves=4, |
|
int _nOctaveLayers=2, bool _extended=false); |
|
// returns the number of elements in each descriptor (64 or 128) |
|
int descriptorSize() const; |
|
// detects keypoints using fast multi-scale Hessian detector |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
// detects keypoints and computes the SURF descriptors for them; |
|
// output vector "descriptors" stores elements of descriptors and has size |
|
// equal descriptorSize()*keypoints.size() as each descriptor is |
|
// descriptorSize() elements of this vector. |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
vector<float>& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
}; |
|
|
|
The class ``SURF`` implements Speeded Up Robust Features descriptor Bay06. |
|
There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints |
|
(which is the default option), but the descriptors can be also computed for the user-specified keypoints. |
|
The function can be used for object tracking and localization, image stitching etc. See the ``find_obj.cpp`` demo in OpenCV samples directory. |
|
|
|
.. index:: RandomizedTree |
|
|
|
.. _RandomizedTree: |
|
|
|
RandomizedTree |
|
-------------- |
|
.. c:type:: RandomizedTree |
|
|
|
The class contains base structure for ``RTreeClassifier`` :: |
|
|
|
class CV_EXPORTS RandomizedTree |
|
{ |
|
public: |
|
friend class RTreeClassifier; |
|
|
|
RandomizedTree(); |
|
~RandomizedTree(); |
|
|
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, int depth, int views, |
|
size_t reduced_num_dim, int num_quant_bits); |
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, PatchGenerator &make_patch, int depth, |
|
int views, size_t reduced_num_dim, int num_quant_bits); |
|
|
|
// following two funcs are EXPERIMENTAL |
|
//(do not use unless you know exactly what you do) |
|
static void quantizeVector(float *vec, int dim, int N, float bnds[2], |
|
int clamp_mode=0); |
|
static void quantizeVector(float *src, int dim, int N, float bnds[2], |
|
uchar *dst); |
|
|
|
// patch_data must be a 32x32 array (no row padding) |
|
float* getPosterior(uchar* patch_data); |
|
const float* getPosterior(uchar* patch_data) const; |
|
uchar* getPosterior2(uchar* patch_data); |
|
|
|
void read(const char* file_name, int num_quant_bits); |
|
void read(std::istream &is, int num_quant_bits); |
|
void write(const char* file_name) const; |
|
void write(std::ostream &os) const; |
|
|
|
int classes() { return classes_; } |
|
int depth() { return depth_; } |
|
|
|
void discardFloatPosteriors() { freePosteriors(1); } |
|
|
|
inline void applyQuantization(int num_quant_bits) |
|
{ makePosteriors2(num_quant_bits); } |
|
|
|
private: |
|
int classes_; |
|
int depth_; |
|
int num_leaves_; |
|
std::vector<RTreeNode> nodes_; |
|
float **posteriors_; // 16-bytes aligned posteriors |
|
uchar **posteriors2_; // 16-bytes aligned posteriors |
|
std::vector<int> leaf_counts_; |
|
|
|
void createNodes(int num_nodes, RNG &rng); |
|
void allocPosteriorsAligned(int num_leaves, int num_classes); |
|
void freePosteriors(int which); |
|
// which: 1=posteriors_, 2=posteriors2_, 3=both |
|
void init(int classes, int depth, RNG &rng); |
|
void addExample(int class_id, uchar* patch_data); |
|
void finalize(size_t reduced_num_dim, int num_quant_bits); |
|
int getIndex(uchar* patch_data) const; |
|
inline float* getPosteriorByIndex(int index); |
|
inline uchar* getPosteriorByIndex2(int index); |
|
inline const float* getPosteriorByIndex(int index) const; |
|
void convertPosteriorsToChar(); |
|
void makePosteriors2(int num_quant_bits); |
|
void compressLeaves(size_t reduced_num_dim); |
|
void estimateQuantPercForPosteriors(float perc[2]); |
|
}; |
|
|
|
.. index:: RandomizedTree::train |
|
|
|
RandomizedTree::train |
|
------------------------- |
|
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
|
|
|
Trains a randomized tree using input set of keypoints |
|
|
|
.. c:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
|
|
|
{Vector of ``BaseKeypoint`` type. Contains keypoints from the image are used for training} |
|
{Random numbers generator is used for training} |
|
{Patch generator is used for training} |
|
{Maximum tree depth} |
|
|
|
{Number of dimensions are used in compressed signature} |
|
{Number of bits are used for quantization} |
|
|
|
.. index:: RandomizedTree::read |
|
|
|
RandomizedTree::read |
|
------------------------ |
|
.. c:function:: read(const char* file_name, int num_quant_bits) |
|
|
|
Reads pre-saved randomized tree from file or stream |
|
|
|
.. c:function:: read(std::istream \&is, int num_quant_bits) |
|
|
|
:param file_name: Filename of file contains randomized tree data |
|
|
|
:param is: Input stream associated with file contains randomized tree data |
|
|
|
{Number of bits are used for quantization} |
|
|
|
.. index:: RandomizedTree::write |
|
|
|
RandomizedTree::write |
|
------------------------- |
|
.. c:function:: void write(const char* file_name) const |
|
|
|
Writes current randomized tree to a file or stream |
|
|
|
.. c:function:: void write(std::ostream \&os) const |
|
|
|
:param file_name: Filename of file where randomized tree data will be stored |
|
|
|
:param is: Output stream associated with file where randomized tree data will be stored |
|
|
|
.. index:: RandomizedTree::applyQuantization |
|
|
|
RandomizedTree::applyQuantization |
|
------------------------------------- |
|
.. c:function:: void applyQuantization(int num_quant_bits) |
|
|
|
Applies quantization to the current randomized tree |
|
|
|
{Number of bits are used for quantization} |
|
|
|
.. index:: RTreeNode |
|
|
|
.. _RTreeNode: |
|
|
|
RTreeNode |
|
--------- |
|
.. c:type:: RTreeNode |
|
|
|
The class contains base structure for ``RandomizedTree`` :: |
|
|
|
struct RTreeNode |
|
{ |
|
short offset1, offset2; |
|
|
|
RTreeNode() {} |
|
|
|
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) |
|
: offset1(y1*PATCH_SIZE + x1), |
|
offset2(y2*PATCH_SIZE + x2) |
|
{} |
|
|
|
//! Left child on 0, right child on 1 |
|
inline bool operator() (uchar* patch_data) const |
|
{ |
|
return patch_data[offset1] > patch_data[offset2]; |
|
} |
|
}; |
|
|
|
.. index:: RTreeClassifier |
|
|
|
.. _RTreeClassifier: |
|
|
|
RTreeClassifier |
|
--------------- |
|
.. c:type:: RTreeClassifier |
|
|
|
The class contains ``RTreeClassifier`` . It represents calonder descriptor which was originally introduced by Michael Calonder :: |
|
|
|
class CV_EXPORTS RTreeClassifier |
|
{ |
|
public: |
|
static const int DEFAULT_TREES = 48; |
|
static const size_t DEFAULT_NUM_QUANT_BITS = 4; |
|
|
|
RTreeClassifier(); |
|
|
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, |
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
|
int depth = DEFAULT_DEPTH, |
|
int views = DEFAULT_VIEWS, |
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
|
bool print_status = true); |
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, |
|
PatchGenerator &make_patch, |
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
|
int depth = DEFAULT_DEPTH, |
|
int views = DEFAULT_VIEWS, |
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
|
bool print_status = true); |
|
|
|
// sig must point to a memory block of at least |
|
//classes()*sizeof(float|uchar) bytes |
|
void getSignature(IplImage *patch, uchar *sig); |
|
void getSignature(IplImage *patch, float *sig); |
|
void getSparseSignature(IplImage *patch, float *sig, |
|
float thresh); |
|
|
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10); |
|
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, |
|
int sig_len=176); |
|
static inline uchar* safeSignatureAlloc(int num_sig=1, |
|
int sig_len=176); |
|
|
|
inline int classes() { return classes_; } |
|
inline int original_num_classes() |
|
{ return original_num_classes_; } |
|
|
|
void setQuantization(int num_quant_bits); |
|
void discardFloatPosteriors(); |
|
|
|
void read(const char* file_name); |
|
void read(std::istream &is); |
|
void write(const char* file_name) const; |
|
void write(std::ostream &os) const; |
|
|
|
std::vector<RandomizedTree> trees_; |
|
|
|
private: |
|
int classes_; |
|
int num_quant_bits_; |
|
uchar **posteriors_; |
|
ushort *ptemp_; |
|
int original_num_classes_; |
|
bool keep_floats_; |
|
}; |
|
|
|
.. index:: RTreeClassifier::train |
|
|
|
RTreeClassifier::train |
|
-------------------------- |
|
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
|
|
|
Trains a randomized tree classificator using input set of keypoints |
|
|
|
.. c:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
|
|
|
{Vector of ``BaseKeypoint`` type. Contains keypoints from the image are used for training} |
|
{Random numbers generator is used for training} |
|
{Patch generator is used for training} |
|
{Number of randomized trees used in RTreeClassificator} |
|
{Maximum tree depth} |
|
|
|
{Number of dimensions are used in compressed signature} |
|
{Number of bits are used for quantization} |
|
{Print current status of training on the console} |
|
|
|
.. index:: RTreeClassifier::getSignature |
|
|
|
RTreeClassifier::getSignature |
|
--------------------------------- |
|
.. c:function:: void getSignature(IplImage *patch, uchar *sig) |
|
|
|
Returns signature for image patch |
|
|
|
.. c:function:: void getSignature(IplImage *patch, float *sig) |
|
|
|
{Image patch to calculate signature for} |
|
{Output signature (array dimension is ``reduced_num_dim)`` } |
|
|
|
.. index:: RTreeClassifier::getSparseSignature |
|
|
|
RTreeClassifier::getSparseSignature |
|
--------------------------------------- |
|
|
|
.. c:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh) |
|
|
|
The function is simular to getSignaturebut uses the threshold for removing all signature elements less than the threshold. So that the signature is compressed |
|
|
|
{Image patch to calculate signature for} |
|
{Output signature (array dimension is ``reduced_num_dim)``} |
|
{The threshold that is used for compressing the signature} |
|
|
|
.. index:: RTreeClassifier::countNonZeroElements |
|
|
|
RTreeClassifier::countNonZeroElements |
|
----------------------------------------- |
|
.. c:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10) |
|
|
|
The function returns the number of non-zero elements in the input array. |
|
|
|
:param vec: Input vector contains float elements |
|
|
|
:param n: Input vector size |
|
|
|
{The threshold used for elements counting. We take all elements are less than ``tol`` as zero elements} |
|
|
|
.. index:: RTreeClassifier::read |
|
|
|
RTreeClassifier::read |
|
------------------------- |
|
.. c:function:: read(const char* file_name) |
|
|
|
Reads pre-saved RTreeClassifier from file or stream |
|
|
|
.. c:function:: read(std::istream& is) |
|
|
|
:param file_name: Filename of file contains randomized tree data |
|
|
|
:param is: Input stream associated with file contains randomized tree data |
|
|
|
.. index:: RTreeClassifier::write |
|
|
|
RTreeClassifier::write |
|
-------------------------- |
|
.. c:function:: void write(const char* file_name) const |
|
|
|
Writes current RTreeClassifier to a file or stream |
|
|
|
.. c:function:: void write(std::ostream \&os) const |
|
|
|
:param file_name: Filename of file where randomized tree data will be stored |
|
|
|
:param is: Output stream associated with file where randomized tree data will be stored |
|
|
|
.. index:: RTreeClassifier::setQuantization |
|
|
|
RTreeClassifier::setQuantization |
|
------------------------------------ |
|
.. c:function:: void setQuantization(int num_quant_bits) |
|
|
|
Applies quantization to the current randomized tree |
|
|
|
{Number of bits are used for quantization} |
|
|
|
Below there is an example of ``RTreeClassifier`` usage for feature matching. There are test and train images and we extract features from both with SURF. Output is |
|
:math:`best\_corr` and |
|
:math:`best\_corr\_idx` arrays which keep the best probabilities and corresponding features indexes for every train feature. :: |
|
|
|
CvMemStorage* storage = cvCreateMemStorage(0); |
|
CvSeq *objectKeypoints = 0, *objectDescriptors = 0; |
|
CvSeq *imageKeypoints = 0, *imageDescriptors = 0; |
|
CvSURFParams params = cvSURFParams(500, 1); |
|
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors, |
|
storage, params ); |
|
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors, |
|
storage, params ); |
|
|
|
RTreeClassifier detector; |
|
int patch_width = PATCH_SIZE; |
|
iint patch_height = PATCH_SIZE; |
|
vector<BaseKeypoint> base_set; |
|
int i=0; |
|
CvSURFPoint* point; |
|
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++) |
|
{ |
|
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i); |
|
base_set.push_back( |
|
BaseKeypoint(point->pt.x,point->pt.y,train_image)); |
|
} |
|
|
|
//Detector training |
|
RNG rng( cvGetTickCount() ); |
|
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3, |
|
-CV_PI/3,CV_PI/3); |
|
|
|
printf("RTree Classifier training...n"); |
|
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000, |
|
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS); |
|
printf("Donen"); |
|
|
|
float* signature = new float[detector.original_num_classes()]; |
|
float* best_corr; |
|
int* best_corr_idx; |
|
if (imageKeypoints->total > 0) |
|
{ |
|
best_corr = new float[imageKeypoints->total]; |
|
best_corr_idx = new int[imageKeypoints->total]; |
|
} |
|
|
|
for(i=0; i < imageKeypoints->total; i++) |
|
{ |
|
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i); |
|
int part_idx = -1; |
|
float prob = 0.0f; |
|
|
|
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2, |
|
(int)(point->pt.y) - patch_height/2, |
|
patch_width, patch_height); |
|
cvSetImageROI(test_image, roi); |
|
roi = cvGetImageROI(test_image); |
|
if(roi.width != patch_width || roi.height != patch_height) |
|
{ |
|
best_corr_idx[i] = part_idx; |
|
best_corr[i] = prob; |
|
} |
|
else |
|
{ |
|
cvSetImageROI(test_image, roi); |
|
IplImage* roi_image = |
|
cvCreateImage(cvSize(roi.width, roi.height), |
|
test_image->depth, test_image->nChannels); |
|
cvCopy(test_image,roi_image); |
|
|
|
detector.getSignature(roi_image, signature); |
|
for (int j = 0; j< detector.original_num_classes();j++) |
|
{ |
|
if (prob < signature[j]) |
|
{ |
|
part_idx = j; |
|
prob = signature[j]; |
|
} |
|
} |
|
|
|
best_corr_idx[i] = part_idx; |
|
best_corr[i] = prob; |
|
|
|
if (roi_image) |
|
cvReleaseImage(&roi_image); |
|
} |
|
cvResetImageROI(test_image); |
|
} |
|
|
|
..
|
|
|