Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Alexander Alekhin 2dac35a97d Merge pull request #11091 from berak:openpose_sample 7 years ago
..
face_detector Misc. ./samples typos 7 years ago
CMakeLists.txt cmake: refactored scripts with samples building: 7 years ago
README.md Semantic segmentation sample. 7 years ago
classification.cpp Semantic segmentation sample. 7 years ago
classification.py Update tutorials. A new cv::dnn::readNet function 7 years ago
colorization.cpp Minor refactoring in several C++ samples: 7 years ago
colorization.py Merge pull request #10777 from berak:dnn_colorize_cpp 7 years ago
fast_neural_style.py Layers for fast-neural-style models: https://github.com/jcjohnson/fast-neural-style 7 years ago
js_face_recognition.html Test for FP16 version of OpenCV face detection network 7 years ago
mobilenet_ssd_accuracy.py Specific version of MobileNet-SSD from TensorFlow 7 years ago
object_detection.cpp Semantic segmentation sample. 7 years ago
object_detection.py Update tutorials. A new cv::dnn::readNet function 7 years ago
openpose.cpp dnn: add an openpose.cpp sample 7 years ago
openpose.py fixed samples/dnn/openpose.py 7 years ago
segmentation.cpp Semantic segmentation sample. 7 years ago
segmentation.py Semantic segmentation sample. 7 years ago
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 7 years ago
tf_text_graph_ssd.py Use only absolute prior boxes explicit sizes. Remove scales attributes. (#10874) 7 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Object detection

Model Scale Size WxH Mean subtraction Channels order
MobileNet-SSD, Caffe 0.00784 (2/255) 300x300 127.5 127.5 127.5 BGR
OpenCV face detector 1.0 300x300 104 177 123 BGR
SSDs from TensorFlow 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB
YOLO 0.00392 (1/255) 416x416 0 0 0 RGB
VGG16-SSD 1.0 300x300 104 117 123 BGR
Faster-RCNN 1.0 800x600 102.9801, 115.9465, 122.7717 BGR
R-FCN 1.0 800x600 102.9801 115.9465 122.7717 BGR

Classification

Model Scale Size WxH Mean subtraction Channels order
GoogLeNet 1.0 224x224 104 117 123 BGR
SqueezeNet 1.0 227x227 0 0 0 BGR

Semantic segmentation

Model Scale Size WxH Mean subtraction Channels order
ENet 0.00392 (1/255) 1024x512 0 0 0 RGB
FCN8s 1.0 500x500 0 0 0 BGR

References