mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
11 KiB
384 lines
11 KiB
#include "opencv2/core/mat.hpp" |
|
#include "opencv2/core/types_c.h" |
|
#include "precomp.hpp" |
|
|
|
// glue |
|
|
|
CvMatND::CvMatND(const cv::Mat& m) |
|
{ |
|
cvInitMatNDHeader(this, m.dims, m.size, m.type(), m.data ); |
|
int i, d = m.dims; |
|
for( i = 0; i < d; i++ ) |
|
dim[i].step = (int)m.step[i]; |
|
type |= m.flags & cv::Mat::CONTINUOUS_FLAG; |
|
} |
|
|
|
_IplImage::_IplImage(const cv::Mat& m) |
|
{ |
|
CV_Assert( m.dims <= 2 ); |
|
cvInitImageHeader(this, m.size(), cvIplDepth(m.flags), m.channels()); |
|
cvSetData(this, m.data, (int)m.step[0]); |
|
} |
|
|
|
namespace cv { |
|
|
|
static Mat cvMatToMat(const CvMat* m, bool copyData) |
|
{ |
|
Mat thiz; |
|
|
|
if( !m ) |
|
return thiz; |
|
|
|
if( !copyData ) |
|
{ |
|
thiz.flags = Mat::MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG)); |
|
thiz.dims = 2; |
|
thiz.rows = m->rows; |
|
thiz.cols = m->cols; |
|
thiz.datastart = thiz.data = m->data.ptr; |
|
size_t esz = CV_ELEM_SIZE(m->type), minstep = thiz.cols*esz, _step = m->step; |
|
if( _step == 0 ) |
|
_step = minstep; |
|
thiz.datalimit = thiz.datastart + _step*thiz.rows; |
|
thiz.dataend = thiz.datalimit - _step + minstep; |
|
thiz.step[0] = _step; thiz.step[1] = esz; |
|
} |
|
else |
|
{ |
|
thiz.datastart = thiz.dataend = thiz.data = 0; |
|
Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(thiz); |
|
} |
|
|
|
return thiz; |
|
} |
|
|
|
static Mat cvMatNDToMat(const CvMatND* m, bool copyData) |
|
{ |
|
Mat thiz; |
|
|
|
if( !m ) |
|
return thiz; |
|
thiz.datastart = thiz.data = m->data.ptr; |
|
thiz.flags |= CV_MAT_TYPE(m->type); |
|
int _sizes[CV_MAX_DIM]; |
|
size_t _steps[CV_MAX_DIM]; |
|
|
|
int d = m->dims; |
|
for( int i = 0; i < d; i++ ) |
|
{ |
|
_sizes[i] = m->dim[i].size; |
|
_steps[i] = m->dim[i].step; |
|
} |
|
|
|
setSize(thiz, d, _sizes, _steps); |
|
finalizeHdr(thiz); |
|
|
|
if( copyData ) |
|
{ |
|
Mat temp(thiz); |
|
thiz.release(); |
|
temp.copyTo(thiz); |
|
} |
|
|
|
return thiz; |
|
} |
|
|
|
static Mat iplImageToMat(const IplImage* img, bool copyData) |
|
{ |
|
Mat m; |
|
|
|
if( !img ) |
|
return m; |
|
|
|
m.dims = 2; |
|
CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0); |
|
|
|
int imgdepth = IPL2CV_DEPTH(img->depth); |
|
size_t esz; |
|
m.step[0] = img->widthStep; |
|
|
|
if(!img->roi) |
|
{ |
|
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL); |
|
m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, img->nChannels); |
|
m.rows = img->height; |
|
m.cols = img->width; |
|
m.datastart = m.data = (uchar*)img->imageData; |
|
esz = CV_ELEM_SIZE(m.flags); |
|
} |
|
else |
|
{ |
|
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0); |
|
bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE; |
|
m.flags = Mat::MAGIC_VAL + CV_MAKETYPE(imgdepth, selectedPlane ? 1 : img->nChannels); |
|
m.rows = img->roi->height; |
|
m.cols = img->roi->width; |
|
esz = CV_ELEM_SIZE(m.flags); |
|
m.datastart = m.data = (uchar*)img->imageData + |
|
(selectedPlane ? (img->roi->coi - 1)*m.step*img->height : 0) + |
|
img->roi->yOffset*m.step[0] + img->roi->xOffset*esz; |
|
} |
|
m.datalimit = m.datastart + m.step.p[0]*m.rows; |
|
m.dataend = m.datastart + m.step.p[0]*(m.rows-1) + esz*m.cols; |
|
m.flags |= (m.cols*esz == m.step.p[0] || m.rows == 1 ? Mat::CONTINUOUS_FLAG : 0); |
|
m.step[1] = esz; |
|
|
|
if( copyData ) |
|
{ |
|
Mat m2 = m; |
|
m.release(); |
|
if( !img->roi || !img->roi->coi || |
|
img->dataOrder == IPL_DATA_ORDER_PLANE) |
|
m2.copyTo(m); |
|
else |
|
{ |
|
int ch[] = {img->roi->coi - 1, 0}; |
|
m.create(m2.rows, m2.cols, m2.type()); |
|
mixChannels(&m2, 1, &m, 1, ch, 1); |
|
} |
|
} |
|
|
|
return m; |
|
} |
|
|
|
Mat cvarrToMat(const CvArr* arr, bool copyData, |
|
bool /*allowND*/, int coiMode, AutoBuffer<double>* abuf ) |
|
{ |
|
if( !arr ) |
|
return Mat(); |
|
if( CV_IS_MAT_HDR_Z(arr) ) |
|
return cvMatToMat((const CvMat*)arr, copyData); |
|
if( CV_IS_MATND(arr) ) |
|
return cvMatNDToMat((const CvMatND*)arr, copyData ); |
|
if( CV_IS_IMAGE(arr) ) |
|
{ |
|
const IplImage* iplimg = (const IplImage*)arr; |
|
if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 ) |
|
CV_Error(CV_BadCOI, "COI is not supported by the function"); |
|
return iplImageToMat(iplimg, copyData); |
|
} |
|
if( CV_IS_SEQ(arr) ) |
|
{ |
|
CvSeq* seq = (CvSeq*)arr; |
|
int total = seq->total, type = CV_MAT_TYPE(seq->flags), esz = seq->elem_size; |
|
if( total == 0 ) |
|
return Mat(); |
|
CV_Assert(total > 0 && CV_ELEM_SIZE(seq->flags) == esz); |
|
if(!copyData && seq->first->next == seq->first) |
|
return Mat(total, 1, type, seq->first->data); |
|
if( abuf ) |
|
{ |
|
abuf->allocate(((size_t)total*esz + sizeof(double)-1)/sizeof(double)); |
|
double* bufdata = *abuf; |
|
cvCvtSeqToArray(seq, bufdata, CV_WHOLE_SEQ); |
|
return Mat(total, 1, type, bufdata); |
|
} |
|
|
|
Mat buf(total, 1, type); |
|
cvCvtSeqToArray(seq, buf.ptr(), CV_WHOLE_SEQ); |
|
return buf; |
|
} |
|
CV_Error(CV_StsBadArg, "Unknown array type"); |
|
return Mat(); |
|
} |
|
|
|
void extractImageCOI(const CvArr* arr, OutputArray _ch, int coi) |
|
{ |
|
Mat mat = cvarrToMat(arr, false, true, 1); |
|
_ch.create(mat.dims, mat.size, mat.depth()); |
|
Mat ch = _ch.getMat(); |
|
if(coi < 0) |
|
{ |
|
CV_Assert( CV_IS_IMAGE(arr) ); |
|
coi = cvGetImageCOI((const IplImage*)arr)-1; |
|
} |
|
CV_Assert(0 <= coi && coi < mat.channels()); |
|
int _pairs[] = { coi, 0 }; |
|
mixChannels( &mat, 1, &ch, 1, _pairs, 1 ); |
|
} |
|
|
|
void insertImageCOI(InputArray _ch, CvArr* arr, int coi) |
|
{ |
|
Mat ch = _ch.getMat(), mat = cvarrToMat(arr, false, true, 1); |
|
if(coi < 0) |
|
{ |
|
CV_Assert( CV_IS_IMAGE(arr) ); |
|
coi = cvGetImageCOI((const IplImage*)arr)-1; |
|
} |
|
CV_Assert(ch.size == mat.size && ch.depth() == mat.depth() && 0 <= coi && coi < mat.channels()); |
|
int _pairs[] = { 0, coi }; |
|
mixChannels( &ch, 1, &mat, 1, _pairs, 1 ); |
|
} |
|
|
|
} // cv:: |
|
|
|
// operations |
|
|
|
CV_IMPL void cvSetIdentity( CvArr* arr, CvScalar value ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(arr); |
|
cv::setIdentity(m, value); |
|
} |
|
|
|
|
|
CV_IMPL CvScalar cvTrace( const CvArr* arr ) |
|
{ |
|
return cv::trace(cv::cvarrToMat(arr)); |
|
} |
|
|
|
|
|
CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.rows == dst.cols && src.cols == dst.rows && src.type() == dst.type() ); |
|
transpose( src, dst ); |
|
} |
|
|
|
|
|
CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(matrix); |
|
cv::completeSymm( m, LtoR != 0 ); |
|
} |
|
|
|
|
|
CV_IMPL void cvCrossProduct( const CvArr* srcAarr, const CvArr* srcBarr, CvArr* dstarr ) |
|
{ |
|
cv::Mat srcA = cv::cvarrToMat(srcAarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( srcA.size() == dst.size() && srcA.type() == dst.type() ); |
|
srcA.cross(cv::cvarrToMat(srcBarr)).copyTo(dst); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
if( dim < 0 ) |
|
dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1; |
|
|
|
if( dim > 1 ) |
|
CV_Error( CV_StsOutOfRange, "The reduced dimensionality index is out of range" ); |
|
|
|
if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) || |
|
(dim == 1 && (dst.rows != src.rows || dst.cols != 1)) ) |
|
CV_Error( CV_StsBadSize, "The output array size is incorrect" ); |
|
|
|
if( src.channels() != dst.channels() ) |
|
CV_Error( CV_StsUnmatchedFormats, "Input and output arrays must have the same number of channels" ); |
|
|
|
cv::reduce(src, dst, dim, op, dst.type()); |
|
} |
|
|
|
|
|
CV_IMPL CvArr* |
|
cvRange( CvArr* arr, double start, double end ) |
|
{ |
|
CvMat stub, *mat = (CvMat*)arr; |
|
int step; |
|
double val = start; |
|
|
|
if( !CV_IS_MAT(mat) ) |
|
mat = cvGetMat( mat, &stub); |
|
|
|
int rows = mat->rows; |
|
int cols = mat->cols; |
|
int type = CV_MAT_TYPE(mat->type); |
|
double delta = (end-start)/(rows*cols); |
|
|
|
if( CV_IS_MAT_CONT(mat->type) ) |
|
{ |
|
cols *= rows; |
|
rows = 1; |
|
step = 1; |
|
} |
|
else |
|
step = mat->step / CV_ELEM_SIZE(type); |
|
|
|
if( type == CV_32SC1 ) |
|
{ |
|
int* idata = mat->data.i; |
|
int ival = cvRound(val), idelta = cvRound(delta); |
|
|
|
if( fabs(val - ival) < DBL_EPSILON && |
|
fabs(delta - idelta) < DBL_EPSILON ) |
|
{ |
|
for( int i = 0; i < rows; i++, idata += step ) |
|
for( int j = 0; j < cols; j++, ival += idelta ) |
|
idata[j] = ival; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < rows; i++, idata += step ) |
|
for( int j = 0; j < cols; j++, val += delta ) |
|
idata[j] = cvRound(val); |
|
} |
|
} |
|
else if( type == CV_32FC1 ) |
|
{ |
|
float* fdata = mat->data.fl; |
|
for( int i = 0; i < rows; i++, fdata += step ) |
|
for( int j = 0; j < cols; j++, val += delta ) |
|
fdata[j] = (float)val; |
|
} |
|
else |
|
CV_Error( CV_StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" ); |
|
|
|
return arr; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvSort( const CvArr* _src, CvArr* _dst, CvArr* _idx, int flags ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(_src); |
|
|
|
if( _idx ) |
|
{ |
|
cv::Mat idx0 = cv::cvarrToMat(_idx), idx = idx0; |
|
CV_Assert( src.size() == idx.size() && idx.type() == CV_32S && src.data != idx.data ); |
|
cv::sortIdx( src, idx, flags ); |
|
CV_Assert( idx0.data == idx.data ); |
|
} |
|
|
|
if( _dst ) |
|
{ |
|
cv::Mat dst0 = cv::cvarrToMat(_dst), dst = dst0; |
|
CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); |
|
cv::sort( src, dst, flags ); |
|
CV_Assert( dst0.data == dst.data ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL int |
|
cvKMeans2( const CvArr* _samples, int cluster_count, CvArr* _labels, |
|
CvTermCriteria termcrit, int attempts, CvRNG*, |
|
int flags, CvArr* _centers, double* _compactness ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(_samples), labels = cv::cvarrToMat(_labels), centers; |
|
if( _centers ) |
|
{ |
|
centers = cv::cvarrToMat(_centers); |
|
|
|
centers = centers.reshape(1); |
|
data = data.reshape(1); |
|
|
|
CV_Assert( !centers.empty() ); |
|
CV_Assert( centers.rows == cluster_count ); |
|
CV_Assert( centers.cols == data.cols ); |
|
CV_Assert( centers.depth() == data.depth() ); |
|
} |
|
CV_Assert( labels.isContinuous() && labels.type() == CV_32S && |
|
(labels.cols == 1 || labels.rows == 1) && |
|
labels.cols + labels.rows - 1 == data.rows ); |
|
|
|
double compactness = cv::kmeans(data, cluster_count, labels, termcrit, attempts, |
|
flags, _centers ? cv::_OutputArray(centers) : cv::_OutputArray() ); |
|
if( _compactness ) |
|
*_compactness = compactness; |
|
return 1; |
|
}
|
|
|