mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2791 lines
94 KiB
2791 lines
94 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/dnn/all_layers.hpp> |
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
#include <thread> |
|
#endif |
|
|
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static String _tf(TString filename) |
|
{ |
|
String basetestdir = getOpenCVExtraDir(); |
|
size_t len = basetestdir.size(); |
|
if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\') |
|
return (basetestdir + "/dnn/layers") + filename; |
|
return (basetestdir + "dnn/layers/") + filename; |
|
} |
|
|
|
void runLayer(Ptr<Layer> layer, std::vector<Mat> &inpBlobs, std::vector<Mat> &outBlobs) |
|
{ |
|
size_t ninputs = inpBlobs.size(); |
|
std::vector<Mat> inp(ninputs), outp, intp; |
|
std::vector<MatShape> inputs, outputs, internals; |
|
|
|
for (size_t i = 0; i < ninputs; i++) |
|
{ |
|
inp[i] = inpBlobs[i].clone(); |
|
inputs.push_back(shape(inp[i])); |
|
} |
|
|
|
layer->getMemoryShapes(inputs, 0, outputs, internals); |
|
for (size_t i = 0; i < outputs.size(); i++) |
|
{ |
|
outp.push_back(Mat(outputs[i], CV_32F)); |
|
} |
|
for (size_t i = 0; i < internals.size(); i++) |
|
{ |
|
intp.push_back(Mat(internals[i], CV_32F)); |
|
} |
|
|
|
layer->finalize(inp, outp); |
|
layer->forward(inp, outp, intp); |
|
|
|
size_t noutputs = outp.size(); |
|
outBlobs.resize(noutputs); |
|
for (size_t i = 0; i < noutputs; i++) |
|
outBlobs[i] = outp[i]; |
|
} |
|
|
|
class Test_Caffe_layers : public DNNTestLayer |
|
{ |
|
public: |
|
void testLayerUsingCaffeModels(const String& basename, bool useCaffeModel = false, |
|
bool useCommonInputBlob = true, double l1 = 0.0, double lInf = 0.0, |
|
int numInps = 1, int numOuts = 1) |
|
{ |
|
CV_Assert_N(numInps >= 1, numInps <= 10, numOuts >= 1, numOuts <= 10); |
|
String prototxt = _tf(basename + ".prototxt"); |
|
String caffemodel = _tf(basename + ".caffemodel"); |
|
|
|
std::vector<Mat> inps, refs, outs; |
|
|
|
if (numInps > 1) |
|
{ |
|
for (int i = 0; i < numInps; i++) |
|
{ |
|
String inpfile = _tf(basename + cv::format(".input_%d.npy", i)); |
|
inps.push_back(blobFromNPY(inpfile)); |
|
} |
|
} |
|
else |
|
{ |
|
String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); |
|
inps.push_back(blobFromNPY(inpfile)); |
|
} |
|
|
|
if (numOuts > 1) |
|
{ |
|
for (int i = 0; i < numOuts; i++) |
|
{ |
|
String outfile = _tf(basename + cv::format("_%d.npy", i)); |
|
refs.push_back(blobFromNPY(outfile)); |
|
} |
|
} |
|
else |
|
{ |
|
String outfile = _tf(basename + ".npy"); |
|
refs.push_back(blobFromNPY(outfile)); |
|
} |
|
|
|
Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String()); |
|
ASSERT_FALSE(net.empty()); |
|
checkBackend(&inps[0], &refs[0]); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
String inp_name = "input"; |
|
if (numInps > 1) |
|
{ |
|
for (int i = 0; i < numInps; i++) |
|
{ |
|
net.setInput(inps[i], inp_name + cv::format("_%d", i)); |
|
} |
|
} |
|
else |
|
{ |
|
net.setInput(inps.back(), inp_name); |
|
} |
|
|
|
net.forward(outs); |
|
for (int i = 0; i < refs.size(); i++) |
|
{ |
|
normAssert(refs[i], outs[i], "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(Test_Caffe_layers, Softmax) |
|
{ |
|
testLayerUsingCaffeModels("layer_softmax"); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, LRN) |
|
{ |
|
double l1 = 0.0, lInf = 0.0; |
|
// The OpenCL kernels use the native_ math functions which have |
|
// implementation defined accuracy, so we use relaxed thresholds. See |
|
// https://github.com/opencv/opencv/issues/9821 for more details. |
|
if (target == DNN_TARGET_OPENCL) |
|
{ |
|
l1 = 0.01; |
|
lInf = 0.01; |
|
} |
|
testLayerUsingCaffeModels("layer_lrn_spatial", false, true, l1, lInf); |
|
testLayerUsingCaffeModels("layer_lrn_channels", false, true, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Convolution) |
|
{ |
|
testLayerUsingCaffeModels("layer_convolution", true); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, DeConvolution) |
|
{ |
|
if(target == DNN_TARGET_CUDA_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); |
|
testLayerUsingCaffeModels("layer_deconvolution", true, false); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, InnerProduct) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
#endif |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) |
|
// IE exception: Ngraph operation Reshape with name Reshape_4219609 has dynamic output shape on 0 port, but CPU plug-in supports only static shape |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, |
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION |
|
); |
|
#endif |
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_CPU_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16); |
|
|
|
double l1 = 0.0, lInf = 0.0; |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
{ |
|
l1 = 5e-3; |
|
lInf = 2e-2; |
|
} |
|
testLayerUsingCaffeModels("layer_inner_product", true, true, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Pooling_max) |
|
{ |
|
testLayerUsingCaffeModels("layer_pooling_max"); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Pooling_ave) |
|
{ |
|
testLayerUsingCaffeModels("layer_pooling_ave"); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, MVN) |
|
{ |
|
if(backend == DNN_BACKEND_CUDA) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* MVN is unsupported */ |
|
|
|
testLayerUsingCaffeModels("layer_mvn"); |
|
} |
|
|
|
void testReshape(const MatShape& inputShape, const MatShape& targetShape, |
|
int axis = 0, int num_axes = -1, |
|
MatShape mask = MatShape()) |
|
{ |
|
LayerParams params; |
|
params.set("axis", axis); |
|
params.set("num_axes", num_axes); |
|
if (!mask.empty()) |
|
{ |
|
params.set("dim", DictValue::arrayInt<int*>(&mask[0], mask.size())); |
|
} |
|
|
|
Mat inp(inputShape.size(), &inputShape[0], CV_32F); |
|
std::vector<Mat> inpVec(1, inp); |
|
std::vector<Mat> outVec, intVec; |
|
|
|
Ptr<Layer> rl = LayerFactory::createLayerInstance("Reshape", params); |
|
runLayer(rl, inpVec, outVec); |
|
|
|
Mat& out = outVec[0]; |
|
MatShape shape(out.size.p, out.size.p + out.dims); |
|
EXPECT_EQ(shape, targetShape); |
|
} |
|
|
|
TEST(Layer_Test_Reshape, Accuracy) |
|
{ |
|
{ |
|
int inp[] = {4, 3, 1, 2}; |
|
int out[] = {4, 3, 2}; |
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1); |
|
} |
|
{ |
|
int inp[] = {1, 128, 4, 4}; |
|
int out[] = {1, 2048}; |
|
int mask[] = {-1, 2048}; |
|
testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1, |
|
MatShape(mask, mask + 2)); |
|
} |
|
{ |
|
int inp[] = {1, 2, 3}; |
|
int out[] = {3, 1, 2}; |
|
int mask[] = {3, 1, 2}; |
|
testReshape(MatShape(inp, inp + 3), MatShape(out, out + 3), 0, -1, |
|
MatShape(mask, mask + 3)); |
|
} |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, BatchNorm) |
|
{ |
|
testLayerUsingCaffeModels("layer_batch_norm", true); |
|
testLayerUsingCaffeModels("layer_batch_norm_local_stats", true, false); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, ReLU) |
|
{ |
|
testLayerUsingCaffeModels("layer_relu"); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Dropout) |
|
{ |
|
testLayerUsingCaffeModels("layer_dropout"); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Concat) |
|
{ |
|
if (cvtest::skipUnstableTests && (backend == DNN_BACKEND_VKCOM)) |
|
{ |
|
throw SkipTestException("Test_Caffe_layers.Concat test produces unstable result with Vulkan"); |
|
} |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
#if INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2019020000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && |
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, |
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if INF_ENGINE_VER_MAJOR_LT(2021040000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && |
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, |
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#endif |
|
testLayerUsingCaffeModels("layer_concat"); |
|
testLayerUsingCaffeModels("layer_concat_optim", true, false); |
|
testLayerUsingCaffeModels("layer_concat_shared_input", true, false); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Fused_Concat) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, |
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
|
|
checkBackend(); |
|
|
|
// Test case |
|
// input |
|
// | |
|
// v |
|
// some_layer |
|
// | | |
|
// v v |
|
// concat |
|
Net net; |
|
int interLayer; |
|
{ |
|
LayerParams lp; |
|
lp.type = "AbsVal"; |
|
lp.name = "someLayer"; |
|
interLayer = net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
{ |
|
LayerParams lp; |
|
lp.set("axis", 1); |
|
lp.type = "Concat"; |
|
lp.name = "testConcat"; |
|
int id = net.addLayer(lp.name, lp.type, lp); |
|
net.connect(interLayer, 0, id, 0); |
|
net.connect(interLayer, 0, id, 1); |
|
} |
|
int shape[] = {1, 2, 3, 4}; |
|
Mat input(4, shape, CV_32F); |
|
randu(input, 0.0f, 1.0f); // [0, 1] to make AbsVal an identity transformation. |
|
|
|
net.setInput(input); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat out = net.forward(); |
|
|
|
normAssert(slice(out, Range::all(), Range(0, 2), Range::all(), Range::all()), input, "", default_l1, default_lInf); |
|
normAssert(slice(out, Range::all(), Range(2, 4), Range::all(), Range::all()), input, "", default_l1, default_lInf); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Eltwise) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
testLayerUsingCaffeModels("layer_eltwise"); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, PReLU) |
|
{ |
|
double lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16) ? 0.021 : 0.0; |
|
testLayerUsingCaffeModels("layer_prelu", true, true, 0.0, lInf); |
|
} |
|
|
|
// TODO: fix an unstable test case |
|
TEST_P(Test_Caffe_layers, layer_prelu_fc) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
// Reference output values are in range [-0.0001, 10.3906] |
|
double l1 = (target == DNN_TARGET_MYRIAD) ? 0.005 : 0.0; |
|
double lInf = (target == DNN_TARGET_MYRIAD) ? 0.021 : 0.0; |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
{ |
|
l1 = 0.006f; lInf = 0.05f; |
|
} |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
l1 = 0.01f; lInf = 0.05f; |
|
} |
|
#endif |
|
testLayerUsingCaffeModels("layer_prelu_fc", true, false, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Reshape_Split_Slice) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
#endif |
|
|
|
Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt")); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat input(6, 12, CV_32F); |
|
RNG rng(0); |
|
rng.fill(input, RNG::UNIFORM, -1, 1); |
|
|
|
net.setInput(input, "input"); |
|
Mat output = net.forward("output"); |
|
|
|
normAssert(input, output, "", default_l1, default_lInf); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Conv_Elu) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE <= 2018050000 |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
Net net = readNetFromTensorflow(_tf("layer_elu_model.pb")); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
Mat inp = blobFromNPY(_tf("layer_elu_in.npy")); |
|
Mat ref = blobFromNPY(_tf("layer_elu_out.npy")); |
|
|
|
net.setInput(inp, "input"); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat out = net.forward(); |
|
|
|
double l1 = default_l1, lInf = default_lInf; |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
l1 = 0.0002; |
|
lInf = 0.0005; |
|
} |
|
normAssert(ref, out, "", l1, lInf); |
|
} |
|
|
|
class Layer_LSTM_Test : public ::testing::Test |
|
{ |
|
public: |
|
int numInp, numOut; |
|
Mat Wh, Wx, b, h, c; |
|
Ptr<LSTMLayer> layer; |
|
std::vector<Mat> inputs, outputs; |
|
|
|
Layer_LSTM_Test() {} |
|
|
|
void init(const MatShape &inpShape_, const MatShape &outShape_, |
|
bool produceCellOutput, bool useTimestampDim) |
|
{ |
|
numInp = total(inpShape_); |
|
numOut = total(outShape_); |
|
|
|
Wh = Mat::ones(4 * numOut, numOut, CV_32F); |
|
Wx = Mat::ones(4 * numOut, numInp, CV_32F); |
|
b = Mat::ones(4 * numOut, 1, CV_32F); |
|
h = Mat::ones(4, numOut, CV_32F); |
|
c = Mat::ones(4, numOut, CV_32F); |
|
|
|
LayerParams lp; |
|
lp.blobs.resize(5); |
|
lp.blobs[0] = Wh; |
|
lp.blobs[1] = Wx; |
|
lp.blobs[2] = b; |
|
lp.blobs[3] = h; |
|
lp.blobs[4] = c; |
|
|
|
lp.set<bool>("produce_cell_output", produceCellOutput); |
|
lp.set<bool>("use_timestamp_dim", useTimestampDim); |
|
|
|
layer = LSTMLayer::create(lp); |
|
layer->setOutShape(outShape_); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_LSTM_Test, get_set_test) |
|
{ |
|
const int TN = 4; |
|
MatShape inpShape = shape(5, 3, 2); |
|
MatShape outShape = shape(3, 1, 2); |
|
MatShape inpResShape = concat(shape(TN), inpShape); |
|
MatShape outResShape = concat(shape(TN), outShape); |
|
|
|
init(inpShape, outShape, true, false); |
|
layer->setOutShape(outShape); |
|
|
|
Mat C((int)outResShape.size(), &outResShape[0], CV_32F); |
|
randu(C, -1., 1.); |
|
Mat H = C.clone(); |
|
randu(H, -1., 1.); |
|
|
|
Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F); |
|
randu(inp, -1., 1.); |
|
|
|
inputs.push_back(inp); |
|
runLayer(layer, inputs, outputs); |
|
|
|
EXPECT_EQ(2u, outputs.size()); |
|
|
|
print(outResShape, "outResShape"); |
|
print(shape(outputs[0]), "out0"); |
|
print(shape(outputs[0]), "out1"); |
|
|
|
EXPECT_EQ(outResShape, shape(outputs[0])); |
|
EXPECT_EQ(outResShape, shape(outputs[1])); |
|
|
|
EXPECT_EQ(0, layer->inputNameToIndex("x")); |
|
EXPECT_EQ(0, layer->outputNameToIndex("h")); |
|
EXPECT_EQ(1, layer->outputNameToIndex("c")); |
|
} |
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent) |
|
{ |
|
LayerParams lp; |
|
lp.blobs.resize(5); |
|
lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh |
|
lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx |
|
lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias |
|
lp.blobs[3] = Mat::zeros(2, 17, CV_32F); // h_0 |
|
lp.blobs[4] = Mat::zeros(2, 17, CV_32F); // c_0 |
|
Ptr<LSTMLayer> layer = LSTMLayer::create(lp); |
|
|
|
Mat inp = blobFromNPY(_tf("recurrent.input.npy")); |
|
std::vector<Mat> inputs(1, inp), outputs; |
|
runLayer(layer, inputs, outputs); |
|
|
|
Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy")); |
|
normAssert(h_t_reference, outputs[0]); |
|
} |
|
|
|
TEST(Layer_LSTM_Test_Accuracy_with_, HiddenParams) |
|
{ |
|
Mat Wx = blobFromNPY(_tf("lstm.hidden.W.npy")); |
|
Mat Wh = blobFromNPY(_tf("lstm.hidden.R.npy")); |
|
Mat b = blobFromNPY(_tf("lstm.hidden.B.npy")); |
|
Mat h0 = blobFromNPY(_tf("lstm.hidden.h0.npy")); |
|
Mat c0 = blobFromNPY(_tf("lstm.hidden.c0.npy")); |
|
|
|
const int numHidden = 3; |
|
const int numDirs = Wx.size[0]; |
|
const int numFeatures = Wx.size[2]; |
|
|
|
b = b.reshape(1, b.size[0]); |
|
Mat bx = b.colRange(0, b.cols / 2); |
|
Mat bh = b.colRange(b.cols / 2, b.cols); |
|
b = bx + bh; |
|
|
|
// IFGO->IGFO |
|
for (int k = 0; k < numDirs; ++k) |
|
{ |
|
float* WxData = Wx.ptr<float>(k); |
|
float* WhData = Wh.ptr<float>(k); |
|
float* biasData = b.ptr<float>(k); |
|
for (int j = 0; j < numHidden; ++j) |
|
{ |
|
for (int i = 0; i < numFeatures; ++i) |
|
{ |
|
std::swap(WxData[(numHidden + j) * numFeatures + i], |
|
WxData[(numHidden * 2 + j) * numFeatures + i]); |
|
} |
|
for (int i = 0; i < numHidden; ++i) |
|
{ |
|
std::swap(WhData[(numHidden + j) * numHidden + i], |
|
WhData[(numHidden * 2 + j) * numHidden + i]); |
|
} |
|
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]); |
|
} |
|
} |
|
|
|
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]); |
|
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]); |
|
h0 = h0.reshape(1, h0.size[0] * h0.size[1]); |
|
c0 = c0.reshape(1, c0.size[0] * c0.size[1]); |
|
|
|
LayerParams lstmParams; |
|
lstmParams.blobs.resize(5); |
|
lstmParams.blobs[0] = Wh; |
|
lstmParams.blobs[1] = Wx; |
|
lstmParams.blobs[2] = b; |
|
lstmParams.blobs[3] = h0; |
|
lstmParams.blobs[4] = c0; |
|
lstmParams.set("bidirectional", false); |
|
Ptr<LSTMLayer> layer = LSTMLayer::create(lstmParams); |
|
|
|
Mat inp = blobFromNPY(_tf("lstm.hidden.input.npy")); |
|
std::vector<Mat> inputs(1, inp), outputs; |
|
runLayer(layer, inputs, outputs); |
|
|
|
Mat h_t_reference = blobFromNPY(_tf("lstm.hidden.output.npy")); |
|
normAssert(h_t_reference, outputs[0]); |
|
} |
|
|
|
TEST(Layer_GRU_Test_Accuracy_with_, Pytorch) |
|
{ |
|
Mat Wx = blobFromNPY(_tf("gru.W.npy")); |
|
Mat Wh = blobFromNPY(_tf("gru.R.npy")); |
|
Mat b = blobFromNPY(_tf("gru.B.npy")); |
|
Mat h0 = blobFromNPY(_tf("gru.h0.npy")); |
|
|
|
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]); |
|
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]); |
|
h0 = h0.reshape(1, h0.size[0] * h0.size[1]); |
|
b = b.reshape(1, b.size[0]); |
|
|
|
LayerParams gruParams; |
|
gruParams.blobs.resize(4); |
|
gruParams.blobs[0] = Wh; |
|
gruParams.blobs[1] = Wx; |
|
gruParams.blobs[2] = b; |
|
gruParams.blobs[3] = h0; |
|
gruParams.set("bidirectional", false); |
|
Ptr<GRULayer> layer = GRULayer::create(gruParams); |
|
|
|
Mat inp = blobFromNPY(_tf("gru.input.npy")); |
|
std::vector<Mat> inputs(1, inp), outputs; |
|
runLayer(layer, inputs, outputs); |
|
|
|
Mat h_t_reference = blobFromNPY(_tf("gru.output.npy")); |
|
normAssert(h_t_reference, outputs[0]); |
|
} |
|
|
|
TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent) |
|
{ |
|
Ptr<RNNLayer> layer = RNNLayer::create(LayerParams()); |
|
|
|
layer->setWeights( |
|
blobFromNPY(_tf("rnn.prototxt.w_0.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_1.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_2.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_3.npy")), |
|
blobFromNPY(_tf("rnn.prototxt.w_4.npy")) ); |
|
|
|
std::vector<Mat> output, input(1, blobFromNPY(_tf("recurrent.input.npy"))); |
|
runLayer(layer, input, output); |
|
|
|
Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy")); |
|
normAssert(h_ref, output[0]); |
|
} |
|
|
|
TEST(Layer_LSTM_Test_Accuracy_, Reverse) |
|
{ |
|
// This handcrafted setup calculates (approximately) the prefix sum of the |
|
// input, assuming the inputs are suitably small. |
|
cv::Mat input(2, 1, CV_32FC1); |
|
input.at<float>(0, 0) = 1e-5f; |
|
input.at<float>(1, 0) = 2e-5f; |
|
|
|
cv::Mat Wx(4, 1, CV_32FC1); |
|
Wx.at<float>(0, 0) = 0.f; // Input gate |
|
Wx.at<float>(1, 0) = 0.f; // Forget gate |
|
Wx.at<float>(2, 0) = 0.f; // Output gate |
|
Wx.at<float>(3, 0) = 1.f; // Update signal |
|
|
|
cv::Mat Wh(4, 1, CV_32FC1); |
|
Wh.at<float>(0, 0) = 0.f; // Input gate |
|
Wh.at<float>(1, 0) = 0.f; // Forget gate |
|
Wh.at<float>(2, 0) = 0.f; // Output gate |
|
Wh.at<float>(3, 0) = 0.f; // Update signal |
|
|
|
cv::Mat bias(4, 1, CV_32FC1); |
|
bias.at<float>(0, 0) = 1e10f; // Input gate - always allows input to c |
|
bias.at<float>(1, 0) = 1e10f; // Forget gate - never forget anything on c |
|
bias.at<float>(2, 0) = 1e10f; // Output gate - always output everything |
|
bias.at<float>(3, 0) = 0.f; // Update signal |
|
|
|
cv::Mat hInternal = cv::Mat::zeros(1, 1, CV_32FC1); |
|
cv::Mat cInternal = cv::Mat::zeros(1, 1, CV_32FC1); |
|
|
|
LayerParams lp; |
|
lp.set("reverse", true); |
|
lp.set("use_timestamp_dim", true); |
|
lp.blobs.clear(); |
|
lp.blobs.push_back(Wh); |
|
lp.blobs.push_back(Wx); |
|
lp.blobs.push_back(bias); |
|
lp.blobs.push_back(hInternal); |
|
lp.blobs.push_back(cInternal); |
|
|
|
cv::Ptr<cv::dnn::LSTMLayer> layer = LSTMLayer::create(lp); |
|
std::vector<cv::Mat> outputs; |
|
std::vector<cv::Mat> inputs; |
|
inputs.push_back(input); |
|
runLayer(layer, inputs, outputs); |
|
|
|
ASSERT_EQ(1, outputs.size()); |
|
cv::Mat out = outputs[0]; |
|
ASSERT_EQ(3, out.dims); |
|
ASSERT_EQ(shape(2, 1, 1), shape(out)); |
|
float* data = reinterpret_cast<float*>(out.data); |
|
EXPECT_NEAR(std::tanh(1e-5f) + std::tanh(2e-5f), data[0], 1e-10); |
|
EXPECT_NEAR(std::tanh(2e-5f), data[1], 1e-10); |
|
} |
|
|
|
|
|
class Layer_RNN_Test : public ::testing::Test |
|
{ |
|
public: |
|
int nX, nH, nO, nT, nS; |
|
Mat Whh, Wxh, bh, Who, bo; |
|
Ptr<RNNLayer> layer; |
|
|
|
std::vector<Mat> inputs, outputs; |
|
|
|
Layer_RNN_Test() |
|
{ |
|
nT = 3; |
|
nS = 5; |
|
nX = 31; |
|
nH = 64; |
|
nO = 100; |
|
|
|
Whh = Mat::ones(nH, nH, CV_32F); |
|
Wxh = Mat::ones(nH, nX, CV_32F); |
|
bh = Mat::ones(nH, 1, CV_32F); |
|
Who = Mat::ones(nO, nH, CV_32F); |
|
bo = Mat::ones(nO, 1, CV_32F); |
|
|
|
layer = RNNLayer::create(LayerParams()); |
|
layer->setProduceHiddenOutput(true); |
|
layer->setWeights(Wxh, bh, Whh, Who, bo); |
|
} |
|
}; |
|
|
|
TEST_F(Layer_RNN_Test, get_set_test) |
|
{ |
|
int sz[] = { nT, nS, 1, nX }; |
|
Mat inp(4, sz, CV_32F); |
|
randu(inp, -1., 1.); |
|
inputs.push_back(inp); |
|
runLayer(layer, inputs, outputs); |
|
|
|
EXPECT_EQ(outputs.size(), 2u); |
|
EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO)); |
|
EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH)); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Accum) |
|
{ |
|
#ifdef OPENCV_DNN_EXTERNAL_PROTOBUF |
|
throw SkipTestException("Requires patched protobuf"); |
|
#else |
|
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
|
|
testLayerUsingCaffeModels("accum", false, false, 0.0, 0.0, 2); |
|
testLayerUsingCaffeModels("accum_ref", false, false, 0.0, 0.0, 2); |
|
#endif |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, FlowWarp) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
|
|
testLayerUsingCaffeModels("flow_warp", false, false, 0.0, 0.0, 2); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, ChannelNorm) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
testLayerUsingCaffeModels("channel_norm", false, false); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, DataAugmentation) |
|
{ |
|
#ifdef OPENCV_DNN_EXTERNAL_PROTOBUF |
|
throw SkipTestException("Requires patched protobuf"); |
|
#else |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
testLayerUsingCaffeModels("data_augmentation", true, false); |
|
testLayerUsingCaffeModels("data_augmentation_2x1", true, false); |
|
testLayerUsingCaffeModels("data_augmentation_8x6", true, false); |
|
#endif |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Resample) |
|
{ |
|
#ifdef OPENCV_DNN_EXTERNAL_PROTOBUF |
|
throw SkipTestException("Requires patched protobuf"); |
|
#else |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2023000000) |
|
if (backend != DNN_BACKEND_OPENCV) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
#endif |
|
testLayerUsingCaffeModels("nearest_2inps", false, false, 0.0, 0.0, 2); |
|
testLayerUsingCaffeModels("nearest", false, false); |
|
#endif |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Correlation) |
|
{ |
|
#ifdef OPENCV_DNN_EXTERNAL_PROTOBUF |
|
throw SkipTestException("Requires patched protobuf"); |
|
#else |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, |
|
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
testLayerUsingCaffeModels("correlation", false, false, 0.0, 0.0, 2); |
|
#endif |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, Convolution2Inputs) |
|
{ |
|
testLayerUsingCaffeModels("conv_2_inps", true, false, 0.0, 0.0, 2); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, ROIPooling_Accuracy) |
|
{ |
|
Net net = readNetFromCaffe(_tf("net_roi_pooling.prototxt")); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
Mat inp = blobFromNPY(_tf("net_roi_pooling.input.npy")); |
|
Mat rois = blobFromNPY(_tf("net_roi_pooling.rois.npy")); |
|
Mat ref = blobFromNPY(_tf("net_roi_pooling.npy")); |
|
|
|
checkBackend(&inp, &ref); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(inp, "input"); |
|
net.setInput(rois, "rois"); |
|
|
|
Mat out = net.forward(); |
|
|
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5; |
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4; |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
l1 = 2e-4; |
|
lInf = 9e-4; |
|
} |
|
normAssert(out, ref, "", l1, lInf); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, FasterRCNN_Proposal) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
if(backend == DNN_BACKEND_CUDA) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* Proposal layer is unsupported */ |
|
|
|
Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); |
|
|
|
Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); |
|
Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy")); |
|
Mat imInfo = (Mat_<float>(1, 3) << 600, 800, 1.6f); |
|
|
|
net.setInput(scores, "rpn_cls_prob_reshape"); |
|
net.setInput(deltas, "rpn_bbox_pred"); |
|
net.setInput(imInfo, "im_info"); |
|
|
|
std::vector<Mat> outs; |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.forward(outs, "output"); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" : |
|
"net_faster_rcnn_proposal.out_scores.npy")); |
|
const int numDets = ref.size[0]; |
|
EXPECT_LE(numDets, outs[i].size[0]); |
|
normAssert(outs[i].rowRange(0, numDets), ref); |
|
|
|
if (numDets < outs[i].size[0]) |
|
{ |
|
EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0); |
|
} |
|
} |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, Vec2i, bool> > Scale_untrainable; |
|
TEST_P(Scale_untrainable, Accuracy) |
|
{ |
|
Vec4i inpShapeVec = get<0>(GetParam()); |
|
int axis = get<1>(GetParam())[0]; |
|
int weightsDims = get<1>(GetParam())[1]; |
|
bool testFusion = get<2>(GetParam()); |
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; |
|
|
|
// Create a network with two inputs. Scale layer multiplies a first input to |
|
// a second one. See http://caffe.berkeleyvision.org/tutorial/layers/scale.html |
|
Net net; |
|
// Check that this version of Scale layer won't be fused with Convolution layer. |
|
if (testFusion) |
|
{ |
|
LayerParams lp; |
|
lp.set("kernel_size", 1); |
|
lp.set("num_output", 3); |
|
lp.set("group", 3); |
|
lp.set("bias_term", false); |
|
lp.type = "Convolution"; |
|
lp.name = "testConv"; |
|
|
|
std::vector<int> weightsShape(4); |
|
weightsShape[0] = 3; // #outChannels |
|
weightsShape[1] = 1; // #inpChannels / group |
|
weightsShape[2] = 1; // height |
|
weightsShape[3] = 1; // width |
|
Mat weights(weightsShape, CV_32F); |
|
weights.setTo(1); |
|
lp.blobs.push_back(weights); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
LayerParams lp; |
|
lp.type = "Scale"; |
|
lp.name = "testLayer"; |
|
lp.set("axis", axis); |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 1, id, 1); |
|
|
|
Mat input(4, inpShape, CV_32F); |
|
Mat weights(weightsDims, &inpShape[axis], CV_32F); |
|
randu(input, -1, 1); |
|
randu(weights, -1, 1); |
|
|
|
std::vector<String> inpNames(2); |
|
inpNames[0] = "scale_input"; |
|
inpNames[1] = "scale_weights"; |
|
net.setInputsNames(inpNames); |
|
net.setInput(input, inpNames[0]); |
|
net.setInput(weights, inpNames[1]); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat out = net.forward(); |
|
|
|
Mat ref(input.dims, input.size, CV_32F); |
|
float* inpData = (float*)input.data; |
|
float* refData = (float*)ref.data; |
|
float* weightsData = (float*)weights.data; |
|
int spatialSize = 1; |
|
for (int i = axis + weightsDims; i < 4; ++i) |
|
spatialSize *= inpShape[i]; |
|
for (int i = 0; i < ref.total(); ++i) |
|
{ |
|
float w = weightsData[(i / spatialSize) % weights.total()]; |
|
refData[i] = inpData[i] * w; |
|
} |
|
normAssert(out, ref); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test, Scale_untrainable, Combine( |
|
/*input size*/ Values(Vec4i(2, 3, 4, 5)), |
|
/*axis, #dims*/ Values(Vec2i(0, 1), Vec2i(0, 2), Vec2i(0, 3), Vec2i(0, 4), |
|
Vec2i(1, 1), Vec2i(1, 2), Vec2i(1, 3), |
|
Vec2i(2, 1), Vec2i(2, 2), |
|
Vec2i(3, 1)), |
|
/*conv fusion*/ testing::Bool() |
|
)); |
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, Vec4i, int, int, int> > Crop; |
|
TEST_P(Crop, Accuracy) |
|
{ |
|
Vec4i inpShapeVec = get<0>(GetParam()); |
|
Vec4i sizShapeVec = get<1>(GetParam()); |
|
int axis = get<2>(GetParam()); |
|
int numOffsets = get<3>(GetParam()); |
|
int offsetVal = get<4>(GetParam()); |
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; |
|
const int sizShape[] = {sizShapeVec[0], sizShapeVec[1], sizShapeVec[2], sizShapeVec[3]}; |
|
|
|
// Create a network with two inputs. Crop layer crops a first input to |
|
// the size of a second one. |
|
// See http://caffe.berkeleyvision.org/tutorial/layers/crop.html |
|
Net net; |
|
|
|
LayerParams lp; |
|
lp.name = "testCrop"; |
|
lp.type = "Crop"; |
|
lp.set("axis", axis); |
|
if (numOffsets > 0) |
|
{ |
|
std::vector<int> offsets(numOffsets, offsetVal); |
|
lp.set("offset", DictValue::arrayInt<int*>(&offsets[0], offsets.size())); |
|
} |
|
else |
|
offsetVal = 0; |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 1, id, 1); |
|
|
|
Mat inpImage(4, inpShape, CV_32F); |
|
Mat sizImage(4, sizShape, CV_32F); |
|
randu(inpImage, -1, 1); |
|
randu(sizImage, -1, 1); |
|
|
|
std::vector<String> inpNames(2); |
|
inpNames[0] = "cropImage"; |
|
inpNames[1] = "sizImage"; |
|
net.setInputsNames(inpNames); |
|
net.setInput(inpImage, inpNames[0]); |
|
net.setInput(sizImage, inpNames[1]); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
// There are a few conditions that represent invalid input to the crop |
|
// layer, so in those cases we want to verify an exception is thrown. |
|
|
|
bool shouldThrowException = false; |
|
if (numOffsets > 1 && numOffsets != 4 - axis) |
|
shouldThrowException = true; |
|
else |
|
for (int i = axis; i < 4; i++) |
|
if (sizShape[i] + offsetVal > inpShape[i]) |
|
shouldThrowException = true; |
|
|
|
Mat out; |
|
if (shouldThrowException) |
|
{ |
|
ASSERT_ANY_THROW(out = net.forward()); |
|
return; |
|
} |
|
else |
|
out = net.forward(); |
|
|
|
// Finally, compare the cropped output blob from the DNN layer (out) |
|
// to a reference blob (ref) that we compute here. |
|
|
|
std::vector<Range> crop_range; |
|
crop_range.resize(4, Range::all()); |
|
for (int i = axis; i < 4; i++) |
|
crop_range[i] = Range(offsetVal, sizShape[i] + offsetVal); |
|
|
|
Mat ref(sizImage.dims, sizImage.size, CV_32F); |
|
inpImage(&crop_range[0]).copyTo(ref); |
|
normAssert(out, ref); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test, Crop, Combine( |
|
/*input blob shape*/ Values(Vec4i(1, 3, 20, 30)), |
|
/*cropsize blob shape*/ Values(Vec4i(1, 3, 10, 12)), |
|
/*start axis*/ Values(0, 1, 2), |
|
/*number of offsets*/ Values(0, 1, 2, 4), |
|
/*offset value*/ Values(3, 4) |
|
)); |
|
|
|
// Check that by default average pooling layer should not count zero padded values |
|
// into the normalization area. |
|
TEST_P(Test_Caffe_layers, Average_pooling_kernel_area) |
|
{ |
|
LayerParams lp; |
|
lp.name = "testAvePool"; |
|
lp.type = "Pooling"; |
|
lp.set("kernel_size", 2); |
|
lp.set("stride", 2); |
|
lp.set("pool", "AVE"); |
|
|
|
Net net; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
// 1 2 | 3 |
|
// 4 5 | 6 |
|
// ----+-- |
|
// 7 8 | 9 |
|
Mat inp = (Mat_<float>(3, 3) << 1, 2, 3, 4, 5, 6, 7, 8, 9); |
|
Mat ref = (Mat_<float>(2, 2) << (1 + 2 + 4 + 5) / 4.f, (3 + 6) / 2.f, (7 + 8) / 2.f, 9); |
|
Mat tmp = blobFromImage(inp); |
|
net.setInput(blobFromImage(inp)); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat out = net.forward(); |
|
normAssert(out, blobFromImage(ref)); |
|
} |
|
|
|
TEST_P(Test_Caffe_layers, PriorBox_repeated) |
|
{ |
|
Net net = readNet(_tf("prior_box.prototxt")); |
|
int inp_size[] = {1, 3, 10, 10}; |
|
int shape_size[] = {1, 2, 3, 4}; |
|
Mat inp(4, inp_size, CV_32F); |
|
randu(inp, -1.0f, 1.0f); |
|
Mat shape(4, shape_size, CV_32F); |
|
randu(shape, -1.0f, 1.0f); |
|
net.setInput(inp, "data"); |
|
net.setInput(shape, "shape"); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat out = net.forward(); |
|
Mat ref = blobFromNPY(_tf("priorbox_output.npy")); |
|
|
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5; |
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4; |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
l1 = 7e-5; |
|
lInf = 0.0005; |
|
} |
|
normAssert(out, ref, "", l1, lInf); |
|
} |
|
|
|
// Test PriorBoxLayer in case of no aspect ratios (just squared proposals). |
|
TEST_P(Test_Caffe_layers, PriorBox_squares) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
LayerParams lp; |
|
lp.name = "testPriorBox"; |
|
lp.type = "PriorBox"; |
|
lp.set("min_size", 2); |
|
lp.set("flip", true); |
|
lp.set("clip", true); |
|
float variance[] = {0.1f, 0.1f, 0.2f, 0.2f}; |
|
float aspectRatios[] = {1.0f}; // That should be ignored. |
|
lp.set("variance", DictValue::arrayReal<float*>(&variance[0], 4)); |
|
lp.set("aspect_ratio", DictValue::arrayReal<float*>(&aspectRatios[0], 1)); |
|
|
|
Net net; |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 0, id, 1); // The second input is an input image. Shapes are used for boxes normalization. |
|
Mat inp(1, 2, CV_32F); |
|
randu(inp, -1, 1); |
|
net.setInput(blobFromImage(inp)); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat out = net.forward(); |
|
|
|
Mat ref = (Mat_<float>(4, 4) << 0.0, 0.0, 0.75, 1.0, |
|
0.25, 0.0, 1.0, 1.0, |
|
0.1f, 0.1f, 0.2f, 0.2f, |
|
0.1f, 0.1f, 0.2f, 0.2f); |
|
double l1 = 1e-5; |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16) |
|
l1 = 2e-5; |
|
normAssert(out.reshape(1, 4), ref, "", l1); |
|
} |
|
|
|
typedef TestWithParam<tuple<int, int> > Layer_Test_DWconv_Prelu; |
|
TEST_P(Layer_Test_DWconv_Prelu, Accuracy) |
|
{ |
|
// Test case |
|
// input img size 3x16x16 value all 1 |
|
// | |
|
// v |
|
// dw_conv weight[0]=-1 weight[1]=-2 weight[2]=-3 bias={1,2,3} |
|
// | |
|
// v |
|
// prelu weight={1,2,3} |
|
// | |
|
// v |
|
// output out size 3x14x14 if right: out[0]=-8 out[0]=-32 out[0]=-72 |
|
// but current opencv output: out[0]=-24 out[0]=-48 out[0]=-72 |
|
|
|
const int num_input = get<0>(GetParam()); //inpChannels |
|
const int group = 3; //outChannels=group when group>1 |
|
const int num_output = get<1>(GetParam()); |
|
const int kernel_depth = num_input/group; |
|
CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0); |
|
|
|
Net net; |
|
//layer 1: dwconv |
|
LayerParams lp; |
|
lp.name = "dwconv"; |
|
lp.type = "Convolution"; |
|
lp.set("kernel_size", 3); |
|
lp.set("num_output", num_output); |
|
lp.set("pad", 0); |
|
lp.set("group", group); |
|
lp.set("stride", 1); |
|
lp.set("engine", "CAFFE"); |
|
lp.set("bias_term", "true"); |
|
|
|
std::vector<int> weightsShape(4); |
|
weightsShape[0] = num_output; // #outChannels |
|
weightsShape[1] = kernel_depth; // #inpChannels / group |
|
weightsShape[2] = 3; // height |
|
weightsShape[3] = 3; // width |
|
Mat weights(weightsShape, CV_32F, Scalar(1)); |
|
|
|
//assign weights |
|
for (int i = 0; i < weightsShape[0]; ++i) |
|
{ |
|
for (int j = 0; j < weightsShape[1]; ++j) |
|
{ |
|
for (int k = 0; k < weightsShape[2]; ++k) |
|
{ |
|
for (int l = 0; l < weightsShape[3]; ++l) |
|
{ |
|
weights.ptr<float>(i, j, k)[l]=-1*(i+1); |
|
} |
|
} |
|
} |
|
} |
|
lp.blobs.push_back(weights); |
|
|
|
//assign bias |
|
Mat bias(1, num_output, CV_32F, Scalar(1)); |
|
for (int i = 0; i < 1; ++i) |
|
{ |
|
for (int j = 0; j < num_output; ++j) |
|
{ |
|
bias.ptr<float>(i)[j]=j+1; |
|
} |
|
} |
|
lp.blobs.push_back(bias); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
//layer 2: prelu |
|
LayerParams lpr; |
|
lpr.name = "dw_relu"; |
|
lpr.type = "PReLU"; |
|
Mat weightsp(1, num_output, CV_32F, Scalar(1)); |
|
|
|
//assign weights |
|
for (int i = 0; i < 1; ++i) |
|
{ |
|
for (int j = 0; j < num_output; ++j) |
|
{ |
|
weightsp.ptr<float>(i)[j]=j+1; |
|
} |
|
} |
|
|
|
lpr.blobs.push_back(weightsp); |
|
net.addLayerToPrev(lpr.name, lpr.type, lpr); |
|
|
|
int shape[] = {1, num_input, 16, 16}; |
|
Mat in_blob(4, &shape[0], CV_32FC1, Scalar(1)); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.enableWinograd(false); |
|
net.setInput(in_blob); |
|
Mat out = net.forward(); |
|
|
|
//assign target |
|
std::vector<int> outShape(4); |
|
outShape[0] = 1; |
|
outShape[1] = num_output; // outChannels |
|
outShape[2] = 14; // height |
|
outShape[3] = 14; // width |
|
Mat target(outShape, CV_32F, Scalar(1)); |
|
for (int i = 0; i < outShape[0]; ++i) |
|
{ |
|
for (int j = 0; j < outShape[1]; ++j) |
|
{ |
|
for (int k = 0; k < outShape[2]; ++k) |
|
{ |
|
for (int l = 0; l < outShape[3]; ++l) |
|
{ |
|
target.ptr<float>(i, j, k)[l]=(-9*kernel_depth*(j+1)+j+1)*(j+1); |
|
} |
|
} |
|
} |
|
} |
|
|
|
normAssert(out, target); |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_DWconv_Prelu, Combine(Values(3, 6), Values(3, 6))); |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
// Using Intel's Model Optimizer generate .xml and .bin files: |
|
// ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \ |
|
// -p FP32 -i -b ${batch_size} -o /path/to/output/folder |
|
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Convolution_DLDT; |
|
TEST_P(Layer_Test_Convolution_DLDT, Accuracy) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt")); |
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); |
|
|
|
Mat inp = blobFromNPY(_tf("blob.npy")); |
|
|
|
netDefault.setInput(inp); |
|
netDefault.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat outDefault = netDefault.forward(); |
|
|
|
net.setInput(inp); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat out = net.forward(); |
|
|
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5; |
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4; |
|
normAssert(outDefault, out, "", l1, lInf); |
|
|
|
std::vector<int> outLayers = net.getUnconnectedOutLayers(); |
|
ASSERT_EQ(net.getLayer(outLayers[0])->name, "output"); |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution"); |
|
else |
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Result"); |
|
} |
|
|
|
TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
int blobSize[] = {2, 6, 75, 113}; |
|
Mat inputs[] = {Mat(4, &blobSize[0], CV_8U), Mat()}; |
|
|
|
randu(inputs[0], 0, 255); |
|
inputs[0].convertTo(inputs[1], CV_32F); |
|
|
|
Mat outs[2]; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
net.setInput(inputs[i]); |
|
outs[i] = net.forward(); |
|
ASSERT_EQ(outs[i].type(), CV_32F); |
|
} |
|
if (targetId != DNN_TARGET_MYRIAD) |
|
normAssert(outs[0], outs[1]); |
|
} |
|
|
|
TEST_P(Layer_Test_Convolution_DLDT, multithreading) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
std::string xmlPath = _tf("layer_convolution.xml"); |
|
std::string binPath = _tf("layer_convolution.bin"); |
|
Net firstNet = readNet(xmlPath, binPath); |
|
Net secondNet = readNet(xmlPath, binPath); |
|
Mat inp = blobFromNPY(_tf("blob.npy")); |
|
|
|
firstNet.setInput(inp); |
|
secondNet.setInput(inp); |
|
firstNet.setPreferableBackend(backendId); |
|
firstNet.setPreferableTarget(targetId); |
|
secondNet.setPreferableBackend(backendId); |
|
secondNet.setPreferableTarget(targetId); |
|
|
|
Mat out1, out2; |
|
std::thread t1([&]{out1 = firstNet.forward();}); |
|
std::thread t2([&]{out2 = secondNet.forward();}); |
|
|
|
t1.join(); |
|
t2.join(); |
|
|
|
Mat ref = blobFromNPY(_tf("layer_convolution.npy")); |
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5; |
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4; |
|
normAssert(out1, ref, "first thread", l1, lInf); |
|
normAssert(out2, ref, "second thread", l1, lInf); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Convolution_DLDT, |
|
dnnBackendsAndTargetsIE() |
|
); |
|
|
|
// 1. Create a .prototxt file with the following network: |
|
// layer { |
|
// type: "Input" name: "data" top: "data" |
|
// input_param { shape { dim: 1 dim: 2 dim: 3 } } |
|
// } |
|
// layer { |
|
// type: "Input" name: "second_input" top: "second_input" |
|
// input_param { shape { dim: 1 dim: 2 dim: 3 } } |
|
// } |
|
// layer { |
|
// type: "Eltwise" name: "output" top: "output" |
|
// bottom: "data" bottom: "second_input" |
|
// eltwise_param { operation: SUM } |
|
// } |
|
// |
|
// 2. Create a .caffemodel file using Caffe: |
|
// |
|
// import caffe |
|
// net = caffe.Net('/path/to/prototxt', caffe.TEST) |
|
// net.save('/path/to/caffemodel') |
|
// |
|
// 3. Convert using ModelOptimizer. |
|
typedef testing::TestWithParam<tuple<int, int, Target, std::vector<int> > > Test_DLDT_two_inputs_3dim; |
|
TEST_P(Test_DLDT_two_inputs_3dim, as_IR) |
|
{ |
|
int firstInpType = get<0>(GetParam()); |
|
int secondInpType = get<1>(GetParam()); |
|
Target targetId = get<2>(GetParam()); |
|
|
|
Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin")); |
|
std::vector<int> inpSize = get<3>(GetParam()); |
|
Mat firstInp(3, inpSize.data(), firstInpType); |
|
Mat secondInp(3, inpSize.data(), secondInpType); |
|
randu(firstInp, 0, 255); |
|
randu(secondInp, 0, 255); |
|
|
|
net.setInput(firstInp, "data"); |
|
net.setInput(secondInp, "second_input"); |
|
net.setPreferableTarget(targetId); |
|
|
|
double l1 = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) && |
|
(firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.06 : 0.0; |
|
double lInf = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) && |
|
(firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.23 : 0.0; |
|
|
|
Mat out = net.forward(); |
|
|
|
Mat ref; |
|
cv::add(firstInp, secondInp, ref, Mat(), CV_32F); |
|
normAssert(out, ref, "", l1, lInf); |
|
} |
|
|
|
std::vector< std::vector<int> > list_sizes{ {1, 2, 3}, {3, 2, 1}, {5, 5, 5}, {13, 7, 11} }; |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs_3dim, Combine( |
|
Values(CV_8U, CV_32F), Values(CV_8U, CV_32F), |
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)), |
|
testing::ValuesIn(list_sizes) |
|
)); |
|
|
|
class UnsupportedLayer : public Layer |
|
{ |
|
public: |
|
UnsupportedLayer(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(const LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new UnsupportedLayer(params)); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV; |
|
} |
|
|
|
virtual void forward(cv::InputArrayOfArrays inputs, cv::OutputArrayOfArrays outputs, cv::OutputArrayOfArrays internals) CV_OVERRIDE {} |
|
}; |
|
|
|
typedef DNNTestLayer Test_DLDT_layers; |
|
|
|
static void test_dldt_fused_output(Backend backend, Target target) |
|
{ |
|
static const int kNumChannels = 3; |
|
Net net; |
|
{ |
|
LayerParams lp; |
|
lp.set("kernel_size", 1); |
|
lp.set("num_output", 3); |
|
lp.set("bias_term", false); |
|
lp.type = "Convolution"; |
|
lp.name = "testConv"; |
|
lp.blobs.push_back(Mat({kNumChannels, 1, 1, 1}, CV_32F, Scalar(1))); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
{ |
|
LayerParams lp; |
|
lp.set("bias_term", false); |
|
lp.type = "Scale"; |
|
lp.name = "testScale"; |
|
lp.blobs.push_back(Mat({kNumChannels}, CV_32F, Scalar(1))); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
{ |
|
LayerParams lp; |
|
net.addLayerToPrev("unsupported_layer", "Unsupported", lp); |
|
} |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1))); |
|
net.forward(); |
|
} |
|
|
|
TEST_P(Test_DLDT_layers, fused_output) |
|
{ |
|
CV_DNN_REGISTER_LAYER_CLASS(Unsupported, UnsupportedLayer); |
|
try |
|
{ |
|
test_dldt_fused_output(backend, target); |
|
} |
|
catch (const std::exception& e) |
|
{ |
|
ADD_FAILURE() << "Exception: " << e.what(); |
|
} |
|
catch(...) |
|
{ |
|
ADD_FAILURE() << "Unknown exception"; |
|
} |
|
LayerFactory::unregisterLayer("Unsupported"); |
|
} |
|
|
|
TEST_P(Test_DLDT_layers, multiple_networks) |
|
{ |
|
Net nets[2]; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
nets[i].setInputsNames(std::vector<String>(1, format("input_%d", i))); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_size", 1); |
|
lp.set("num_output", 1); |
|
lp.set("bias_term", false); |
|
lp.type = "Convolution"; |
|
lp.name = format("testConv_%d", i); |
|
lp.blobs.push_back(Mat({1, 1, 1, 1}, CV_32F, Scalar(1 + i))); |
|
nets[i].addLayerToPrev(lp.name, lp.type, lp); |
|
nets[i].setPreferableBackend(backend); |
|
nets[i].setPreferableTarget(target); |
|
nets[i].setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1))); |
|
} |
|
Mat out_1 = nets[0].forward(); |
|
Mat out_2 = nets[1].forward(); |
|
// After the second model is initialized we try to receive an output from the first network again. |
|
out_1 = nets[0].forward(); |
|
normAssert(2 * out_1, out_2); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_layers, dnnBackendsAndTargets()); |
|
|
|
#endif // HAVE_INF_ENGINE |
|
|
|
// Test a custom layer. |
|
class CustomInterpLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
CustomInterpLayer(const LayerParams ¶ms) : Layer(params) |
|
{ |
|
zoomFactor = params.get<int>("zoom_factor", 0); |
|
outWidth = params.get<int>("width", 0); |
|
outHeight = params.get<int>("height", 0); |
|
} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CustomInterpLayer(params)); |
|
} |
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs, |
|
const int requiredOutputs, |
|
std::vector<std::vector<int> > &outputs, |
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE |
|
{ |
|
const int batchSize = inputs[0][0]; |
|
const int numChannels = inputs[0][1]; |
|
const int inpHeight = inputs[0][2]; |
|
const int inpWidth = inputs[0][3]; |
|
|
|
std::vector<int> outShape(4); |
|
outShape[0] = batchSize; |
|
outShape[1] = numChannels; |
|
outShape[2] = outHeight != 0 ? outHeight : (inpHeight + (inpHeight - 1) * (zoomFactor - 1)); |
|
outShape[3] = outWidth != 0 ? outWidth : (inpWidth + (inpWidth - 1) * (zoomFactor - 1)); |
|
outputs.assign(1, outShape); |
|
return false; |
|
} |
|
|
|
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE |
|
{ |
|
std::vector<Mat> outputs; |
|
outputs_arr.getMatVector(outputs); |
|
|
|
if (!outWidth && !outHeight) |
|
{ |
|
outHeight = outputs[0].size[2]; |
|
outWidth = outputs[0].size[3]; |
|
} |
|
} |
|
|
|
// Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp |
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
if (inputs_arr.depth() == CV_16F) |
|
{ |
|
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
return; |
|
} |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
Mat& inp = inputs[0]; |
|
Mat& out = outputs[0]; |
|
const float* inpData = (float*)inp.data; |
|
float* outData = (float*)out.data; |
|
|
|
const int batchSize = inp.size[0]; |
|
const int numChannels = inp.size[1]; |
|
const int inpHeight = inp.size[2]; |
|
const int inpWidth = inp.size[3]; |
|
|
|
const float rheight = (outHeight > 1) ? static_cast<float>(inpHeight - 1) / (outHeight - 1) : 0.f; |
|
const float rwidth = (outWidth > 1) ? static_cast<float>(inpWidth - 1) / (outWidth - 1) : 0.f; |
|
for (int h2 = 0; h2 < outHeight; ++h2) |
|
{ |
|
const float h1r = rheight * h2; |
|
const int h1 = h1r; |
|
const int h1p = (h1 < inpHeight - 1) ? 1 : 0; |
|
const float h1lambda = h1r - h1; |
|
const float h0lambda = 1.f - h1lambda; |
|
for (int w2 = 0; w2 < outWidth; ++w2) |
|
{ |
|
const float w1r = rwidth * w2; |
|
const int w1 = w1r; |
|
const int w1p = (w1 < inpWidth - 1) ? 1 : 0; |
|
const float w1lambda = w1r - w1; |
|
const float w0lambda = 1.f - w1lambda; |
|
const float* pos1 = inpData + h1 * inpWidth + w1; |
|
float* pos2 = outData + h2 * outWidth + w2; |
|
for (int c = 0; c < batchSize * numChannels; ++c) |
|
{ |
|
pos2[0] = |
|
h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) + |
|
h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]); |
|
pos1 += inpWidth * inpHeight; |
|
pos2 += outWidth * outHeight; |
|
} |
|
} |
|
} |
|
} |
|
|
|
private: |
|
int outWidth, outHeight, zoomFactor; |
|
}; |
|
|
|
TEST_P(Test_Caffe_layers, Interp) |
|
{ |
|
#ifdef OPENCV_DNN_EXTERNAL_PROTOBUF |
|
throw SkipTestException("Requires patched protobuf"); |
|
#else |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception |
|
#endif |
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
|
|
// Test a custom layer. |
|
CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer); |
|
try |
|
{ |
|
testLayerUsingCaffeModels("layer_interp", false, false); |
|
} |
|
catch (...) |
|
{ |
|
LayerFactory::unregisterLayer("Interp"); |
|
throw; |
|
} |
|
LayerFactory::unregisterLayer("Interp"); |
|
|
|
// Test an implemented layer. |
|
testLayerUsingCaffeModels("layer_interp", false, false); |
|
#endif |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Caffe_layers, dnnBackendsAndTargets()); |
|
|
|
TEST(Layer_Test_PoolingIndices, Accuracy) |
|
{ |
|
Net net; |
|
|
|
LayerParams lp; |
|
lp.set("pool", "max"); |
|
lp.set("kernel_w", 2); |
|
lp.set("kernel_h", 2); |
|
lp.set("stride_w", 2); |
|
lp.set("stride_h", 2); |
|
lp.set("pad_w", 0); |
|
lp.set("pad_h", 0); |
|
lp.name = "testLayer.name"; // This test also checks that OpenCV lets use names with dots. |
|
lp.type = "Pooling"; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
Mat inp(10, 10, CV_8U); |
|
randu(inp, 0, 255); |
|
|
|
Mat maxValues(5, 5, CV_32F, Scalar(-1)), indices(5, 5, CV_32F, Scalar(-1)); |
|
for (int y = 0; y < 10; ++y) |
|
{ |
|
int dstY = y / 2; |
|
for (int x = 0; x < 10; ++x) |
|
{ |
|
int dstX = x / 2; |
|
uint8_t val = inp.at<uint8_t>(y, x); |
|
if ((float)inp.at<uint8_t>(y, x) > maxValues.at<float>(dstY, dstX)) |
|
{ |
|
maxValues.at<float>(dstY, dstX) = val; |
|
indices.at<float>(dstY, dstX) = y * 10 + x; |
|
} |
|
} |
|
} |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.setInput(blobFromImage(inp)); |
|
|
|
std::vector<Mat> outputs; |
|
net.forward(outputs, lp.name); |
|
normAssert(maxValues, outputs[0].reshape(1, 5)); |
|
normAssert(indices, outputs[1].reshape(1, 5)); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<Vec4i, int, tuple<Backend, Target> > > Layer_Test_ShuffleChannel; |
|
TEST_P(Layer_Test_ShuffleChannel, Accuracy) |
|
{ |
|
Vec4i inpShapeVec = get<0>(GetParam()); |
|
int group = get<1>(GetParam()); |
|
ASSERT_EQ(inpShapeVec[1] % group, 0); |
|
const int groupSize = inpShapeVec[1] / group; |
|
int backendId = get<0>(get<2>(GetParam())); |
|
int targetId = get<1>(get<2>(GetParam())); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.set("group", group); |
|
lp.type = "ShuffleChannel"; |
|
lp.name = "testLayer"; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; |
|
Mat inp(4, inpShape, CV_32F); |
|
randu(inp, 0, 255); |
|
|
|
net.setInput(inp); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
|
|
double l1 = 1e-5, lInf = 1e-4; |
|
if (targetId == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
l1 = 5e-2; |
|
lInf = 7e-2; |
|
} |
|
else if (targetId == DNN_TARGET_CUDA_FP16) |
|
{ |
|
l1 = 0.06; |
|
lInf = 0.07; |
|
} |
|
for (int n = 0; n < inpShapeVec[0]; ++n) |
|
{ |
|
for (int c = 0; c < inpShapeVec[1]; ++c) |
|
{ |
|
Mat outChannel = getPlane(out, n, c); |
|
Mat inpChannel = getPlane(inp, n, groupSize * (c % group) + c / group); |
|
normAssert(outChannel, inpChannel, "", l1, lInf); |
|
} |
|
} |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_ShuffleChannel, Combine( |
|
/*input shape*/ Values(Vec4i(1, 6, 5, 7), Vec4i(3, 12, 1, 4)), |
|
/*group*/ Values(1, 2, 3, 6), dnnBackendsAndTargets(/*with IE*/ false) |
|
)); |
|
|
|
TEST(Layer_Test_ReduceMean, accuracy_input_0) |
|
{ |
|
vector<int> szData = { 2, 1, 2, 1 ,2 }; |
|
std::vector<float> initData = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
|
Mat inpInitA(szData, CV_32FC1, Mat(initData).data); |
|
std::vector<float> resAxes0 = { 2, 3, 4, 5 }; |
|
std::vector<float> resAxes1 = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
|
std::vector<float> resAxes2 = { 1, 2, 5, 6 }; |
|
std::vector<float> resAxes3 = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
|
std::vector<float> resAxes4 = { 0.5, 2.5, 4.5, 6.5 }; |
|
std::vector < vector<float>> resReduceMean = { resAxes0, resAxes1, resAxes2, resAxes3, resAxes4 }; |
|
|
|
|
|
for (int i = 0; i < resReduceMean.size(); i++) |
|
{ |
|
Net net; |
|
LayerParams lp; |
|
lp.set("keepdims", 0); |
|
lp.type = "Reduce"; |
|
lp.set("reduce", "MEAN"); |
|
lp.name = "testReduceMean"; |
|
lp.set("axes", i); |
|
lp.blobs.push_back(inpInitA); |
|
|
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.setInput(inpInitA); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat output = net.forward(); |
|
MatShape gt_shape; |
|
for (int j = 0; j < szData.size(); j++) |
|
{ |
|
if (i == j) continue; |
|
gt_shape.push_back(szData[j]); |
|
} |
|
|
|
EXPECT_EQ(gt_shape, shape(output)); |
|
|
|
Mat a = output.reshape(1, output.total()); |
|
normAssert(a, Mat(resReduceMean[i])); |
|
} |
|
} |
|
|
|
|
|
// Check if relu is not fused to convolution if we requested it's output |
|
TEST(Layer_Test_Convolution, relu_fusion) |
|
{ |
|
Net net; |
|
{ |
|
LayerParams lp; |
|
lp.set("kernel_size", 1); |
|
lp.set("num_output", 1); |
|
lp.set("bias_term", false); |
|
lp.type = "Convolution"; |
|
lp.name = "testConv"; |
|
|
|
int weightsShape[] = {1, 1, 1, 1}; |
|
Mat weights(4, &weightsShape[0], CV_32F, Scalar(1)); |
|
lp.blobs.push_back(weights); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
{ |
|
LayerParams lp; |
|
lp.type = "ReLU"; |
|
lp.name = "testReLU"; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
int sz[] = {1, 1, 2, 3}; |
|
Mat input(4, &sz[0], CV_32F); |
|
randu(input, -1.0, -0.1); |
|
net.setInput(input); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat output = net.forward("testConv"); |
|
normAssert(input, output); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<bool, tuple<Backend, Target> > > Layer_Test_Eltwise_unequal; |
|
TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0_truncate) |
|
{ |
|
bool weighted = get<0>(GetParam()); |
|
int backendId = get<0>(get<1>(GetParam())); |
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId == DNN_BACKEND_CUDA && weighted) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "Eltwise"; |
|
lp.name = "testLayer"; |
|
lp.set<std::string>("output_channels_mode", "input_0_truncate"); |
|
|
|
const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 5, 2, 2}, {1, 3, 2, 2}}; |
|
const int out_channels = inpShapes[0][1]; |
|
std::vector<String> inpNames(3); |
|
std::vector<Mat> inputs(3); |
|
|
|
std::vector<float> weights(3, 1); |
|
if (weighted) |
|
{ |
|
for (int i = 0; i < inputs.size(); ++i) |
|
weights[i] = -0.125f + i * 0.25f; |
|
lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size())); |
|
} |
|
|
|
int eltwiseId = net.addLayer(lp.name, lp.type, lp); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
{ |
|
inputs[i].create(4, inpShapes[i], CV_32F); |
|
size_t total = inputs[i].total(); |
|
for (size_t j = 0; j < total; j++) |
|
inputs[i].ptr<float>()[j] = j + i * 100; |
|
inpNames[i] = format("input_%d", i); |
|
net.connect(0, i, eltwiseId, i); |
|
} |
|
Mat ref(4, inpShapes[0], CV_32F, Scalar(0)); |
|
|
|
net.setInputsNames(inpNames); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
{ |
|
//std::cout << ref.reshape(1,1) << endl; |
|
net.setInput(inputs[i], inpNames[i]); |
|
for (size_t batchId = 0; batchId < ref.size[0]; batchId++) |
|
{ |
|
int input_channels = inputs[i].size[1]; |
|
Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() }; |
|
Mat ref_slice = ref(ranges); |
|
Mat input_slice = inputs[i](ranges); |
|
ref_slice += weights[i] * input_slice; |
|
} |
|
} |
|
|
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
normAssert(out, ref); |
|
if (testing::Test::HasFailure()) |
|
{ |
|
std::cout << out.reshape(1,1) << endl; |
|
std::cout << ref.reshape(1,1) << endl; |
|
} |
|
} |
|
|
|
TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0) |
|
{ |
|
bool weighted = get<0>(GetParam()); |
|
int backendId = get<0>(get<1>(GetParam())); |
|
int targetId = get<1>(get<1>(GetParam())); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "Eltwise"; |
|
lp.name = "testLayer"; |
|
lp.set<std::string>("output_channels_mode", "input_0"); |
|
|
|
if (backendId == DNN_BACKEND_CUDA && weighted) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); |
|
|
|
const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 2, 2, 2}, {1, 3, 2, 2}}; |
|
const int out_channels = inpShapes[0][1]; |
|
std::vector<String> inpNames(3); |
|
std::vector<Mat> inputs(3); |
|
|
|
std::vector<float> weights(3, 1); |
|
if (weighted) |
|
{ |
|
for (int i = 0; i < inputs.size(); ++i) |
|
weights[i] = -0.125f + i * 0.25f; |
|
lp.set("coeff", DictValue::arrayReal<float*>(&weights[0], weights.size())); |
|
} |
|
|
|
int eltwiseId = net.addLayer(lp.name, lp.type, lp); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
{ |
|
inputs[i].create(4, inpShapes[i], CV_32F); |
|
size_t total = inputs[i].total(); |
|
for (size_t j = 0; j < total; j++) |
|
inputs[i].ptr<float>()[j] = j + i * 100; |
|
inpNames[i] = format("input_%d", i); |
|
net.connect(0, i, eltwiseId, i); |
|
} |
|
Mat ref(4, inpShapes[0], CV_32F, Scalar(0)); |
|
|
|
net.setInputsNames(inpNames); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
{ |
|
//std::cout << ref.reshape(1,1) << endl; |
|
net.setInput(inputs[i], inpNames[i]); |
|
for (size_t batchId = 0; batchId < ref.size[0]; batchId++) |
|
{ |
|
int input_channels = inputs[i].size[1]; |
|
Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() }; |
|
Mat ref_slice = ref(ranges); |
|
Mat input_slice = inputs[i](ranges); |
|
ref_slice += weights[i] * input_slice; |
|
} |
|
} |
|
|
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
normAssert(out, ref); |
|
if (testing::Test::HasFailure()) |
|
{ |
|
std::cout << out.reshape(1,1) << endl; |
|
std::cout << ref.reshape(1,1) << endl; |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_unequal, Combine( |
|
testing::Bool(), |
|
dnnBackendsAndTargets() |
|
)); |
|
|
|
|
|
struct Layer_Test_Eltwise_bcast : testing::TestWithParam<tuple<string, int, tuple<Backend, Target>>> |
|
{ |
|
public: |
|
void test_bcast() |
|
{ |
|
string op = get<0>(GetParam()); |
|
int dim = get<1>(GetParam()); |
|
tuple<Backend, Target> backend_target= get<2>(GetParam()); |
|
int backend = get<0>(backend_target); |
|
int target = get<1>(backend_target); |
|
|
|
if (backend == DNN_BACKEND_CUDA && dim > 4) |
|
applyTestTag(CV_TEST_TAG_LONG); |
|
|
|
vector<vector<int>> dim_shape_list; |
|
get_all_arr(dim_shape_list, dim); |
|
replace(dim_shape_list, 1, 3); |
|
// same shape |
|
for (int i = 0; i < dim_shape_list.size(); i++) |
|
for (int j = 0; j < dim_shape_list.size(); j++) |
|
run(dim_shape_list[i], dim_shape_list[j], op, backend, target); |
|
|
|
vector<vector<int>> sub_shape_list; |
|
vector<vector<int>> tmp; |
|
for(int i = 1; i < dim; i++){ |
|
get_all_arr(tmp, i); |
|
replace(tmp, 1, 3); |
|
sub_shape_list.insert(sub_shape_list.end(), tmp.begin(), tmp.end()); |
|
} |
|
|
|
// diff shape |
|
for (const auto &shp1: dim_shape_list) |
|
for (const auto &shp2: sub_shape_list) |
|
run(shp1, shp2, op, backend, target); |
|
|
|
// diff shape |
|
for (const auto &shp1: sub_shape_list) |
|
for (const auto &shp2: dim_shape_list) |
|
run(shp1, shp2, op, backend, target); |
|
} |
|
|
|
private: |
|
// give n to generate all n-D arrays with 0 or 1 |
|
static void get_all_arr(vector<vector<int>> &arr, int n) |
|
{ |
|
int total = 1 << n; |
|
arr.assign(total, vector<int>(n, -1)); |
|
for (int i = 0; i < total; i++) |
|
for (int j = 0; j < n; j++) |
|
arr[i][j] = (i >> (n - j - 1)) & 1; |
|
} |
|
|
|
// zero will replace all 0, one will replace all 1 |
|
static void replace(vector<vector<int>> &arr, int zero, int one) |
|
{ |
|
for (int i = 0; i < arr.size(); i++) |
|
for (int j = 0; j < arr[0].size(); j++) |
|
arr[i][j] = arr[i][j] ? one : zero; |
|
} |
|
|
|
static void run(const vector<int> &a_shape, const vector<int> &b_shape, const String &op, const int backend, const int target) |
|
{ |
|
Mat a = Mat::zeros((int) a_shape.size(), a_shape.data(), CV_32FC1); |
|
Mat b = Mat::ones((int) b_shape.size(), b_shape.data(), CV_32FC1); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "NaryEltwise"; |
|
lp.name = "testLayer"; |
|
lp.set("operation", op); |
|
int id = net.addLayerToPrev(lp.name, lp.type, lp); |
|
net.connect(0, 1, id, 1); |
|
|
|
vector<String> inpNames(2); |
|
inpNames[0] = "a"; |
|
inpNames[1] = "b"; |
|
net.setInputsNames(inpNames); |
|
net.setInput(a, inpNames[0]); |
|
net.setInput(b, inpNames[1]); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat re; |
|
re = net.forward(); |
|
auto ptr_re = (float *) re.data; |
|
for (int i = 0; i < re.total(); i++) |
|
if (op == "sum"){ |
|
ASSERT_EQ(1, ptr_re[i]); // sum result should be 1 |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(Layer_Test_Eltwise_bcast, brute_force) |
|
{ |
|
test_bcast(); |
|
} |
|
|
|
// This test is to verify whether the broadcast operations of unidirectional and bidirectional, |
|
// as well as tensors with same and different shapes, can be forwarded correctly. |
|
// This can ensure that the elementwise layer does not have any errors when forwarding. |
|
// |
|
// To test which cases the backend will fallback to the cpu, replace the fallback command like |
|
// `return Ptr<BackendNode>();` in `initCUDA()` with `throw std::runtime_error("fallback");` |
|
// |
|
// To test more operators, add more ops after "sum". |
|
// Default only "sum" is tested, because for the most cases they have the same implementation. |
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_bcast, Combine( |
|
Values("sum"), |
|
Values(1, 2, 3, 4, 5), |
|
dnnBackendsAndTargets() |
|
)); |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Resize; |
|
TEST_P(Layer_Test_Resize, change_input) |
|
{ |
|
int backendId = get<0>(GetParam()); |
|
int targetId = get<1>(GetParam()); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "Resize"; |
|
lp.name = "testLayer"; |
|
lp.set("zoom_factor", 2); |
|
lp.set("interpolation", "nearest"); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
Mat inp(4 + i, 5 + i, CV_8UC3), ref; |
|
randu(inp, 0, 255); |
|
resize(inp, ref, Size(0, 0), 2, 2, INTER_NEAREST); |
|
ref = blobFromImage(ref); |
|
|
|
net.setInput(blobFromImage(inp)); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
normAssert(out, ref); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Resize, dnnBackendsAndTargets()); |
|
|
|
struct Layer_Test_Slice : public testing::TestWithParam<tuple<Backend, Target> > |
|
{ |
|
template<int DIMS> |
|
void test_slice(const int* inputShape, const int* begin, const int* end) |
|
{ |
|
int backendId = get<0>(GetParam()); |
|
int targetId = get<1>(GetParam()); |
|
|
|
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0)); |
|
for (int i = 0; i < (int)input.total(); ++i) |
|
input.ptr<float>()[i] = (float)i; |
|
|
|
std::vector<Range> range(DIMS); |
|
for (int i = 0; i < DIMS; ++i) |
|
range[i] = Range(begin[i], end[i]); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "Slice"; |
|
lp.name = "testLayer"; |
|
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS)); |
|
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS)); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
{ |
|
net.setInput(input); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
|
|
EXPECT_GT(cv::norm(out, NORM_INF), 0); |
|
normAssert(out, input(range)); |
|
#if 0 |
|
cout << input(range).clone().reshape(1, 1) << endl; |
|
cout << out.reshape(1, 1) << endl; |
|
#endif |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(Layer_Test_Slice, slice_channels_17762) |
|
{ |
|
const int inputShape[4] = {1, 16, 6, 8}; |
|
const int begin[] = {0, 4, 0, 0}; |
|
const int end[] = {1, 8, 6, 8}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, slice_channels_with_batch_17762) |
|
{ |
|
const int inputShape[4] = {4, 4, 3, 4}; |
|
const int begin[] = {0, 1, 0, 0}; |
|
const int end[] = {4, 3, 3, 4}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, slice_channels_and_batch_17762) |
|
{ |
|
int backend = get<0>(GetParam()); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
|
|
const int inputShape[4] = {4, 4, 3, 4}; |
|
const int begin[] = {2, 1, 0, 0}; |
|
const int end[] = {4, 3, 3, 4}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, slice_rows) |
|
{ |
|
const int inputShape[4] = {1, 2, 6, 4}; |
|
const int begin[] = {0, 0, 4, 0}; |
|
const int end[] = {1, 2, 6, 4}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, slice_cols) |
|
{ |
|
const int inputShape[4] = {1, 2, 3, 8}; |
|
const int begin[] = {0, 0, 0, 4}; |
|
const int end[] = {1, 2, 3, 8}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
|
|
TEST_P(Layer_Test_Slice, slice_complex_1_unaligned) |
|
{ |
|
const int inputShape[4] = {1, 4, 2, 3}; |
|
const int begin[] = {0, 2, 1, 0}; |
|
const int end[] = {1, 3, 2, 2}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, slice_complex_2_x4) |
|
{ |
|
const int inputShape[4] = {1, 3, 2, 4}; |
|
const int begin[] = {0, 2, 1, 0}; |
|
const int end[] = {1, 3, 2, 2}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, slice_complex_3) |
|
{ |
|
const int inputShape[4] = {1, 6, 4, 8}; |
|
const int begin[] = {0, 2, 1, 4}; |
|
const int end[] = {1, 4, 3, 8}; |
|
test_slice<4>(inputShape, begin, end); |
|
} |
|
|
|
TEST_P(Layer_Test_Slice, variable_input_shape) |
|
{ |
|
int backendId = get<0>(GetParam()); |
|
int targetId = get<1>(GetParam()); |
|
|
|
int begin[] = {0, 0, 0, 0}; |
|
int end[] = {INT_MAX, INT_MAX, INT_MAX, INT_MAX}; |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "Slice"; |
|
lp.name = "testLayer"; |
|
lp.set("begin", DictValue::arrayInt<int*>(&begin[0], 4)); |
|
lp.set("end", DictValue::arrayInt<int*>(&end[0], 4)); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
Mat inp(4 + i, 5 + i, CV_8UC1); |
|
randu(inp, 0, 255); |
|
inp = blobFromImage(inp); |
|
|
|
net.setInput(inp); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
|
|
normAssert(out, inp); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Slice, dnnBackendsAndTargets()); |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_BatchNorm; |
|
TEST_P(Layer_Test_BatchNorm, fusion) |
|
{ |
|
// This tests reinitializes network by forwarding different batch size input. |
|
// We check BatchNorm layer weights restoring after fusion. |
|
int backendId = get<0>(GetParam()); |
|
int targetId = get<1>(GetParam()); |
|
const int ch = 4; |
|
|
|
Mat mean(1, ch, CV_32F), var(1, ch, CV_32F), weights(1, ch, CV_32F); |
|
randu(mean, 0, 1); |
|
randu(var, 0, 1); |
|
randu(weights, 0, 1); |
|
|
|
Net net; |
|
{ |
|
LayerParams lp; |
|
lp.type = "BatchNorm"; |
|
lp.name = "bn"; |
|
lp.set("has_weight", false); |
|
lp.set("has_bias", false); |
|
lp.blobs.push_back(mean); |
|
lp.blobs.push_back(var); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
{ |
|
LayerParams lp; |
|
lp.type = "Scale"; |
|
lp.name = "scale"; |
|
lp.set("has_bias", false); |
|
lp.blobs.push_back(weights); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
|
|
Mat inp(4, 5, CV_32FC(ch)); |
|
randu(inp, 0, 1); |
|
|
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
|
|
net.setInput(blobFromImage(inp)); |
|
Mat ref = net.forward(); |
|
|
|
net.setInput(blobFromImages(std::vector<Mat>(2, inp))); |
|
Mat out = net.forward(); |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
std::vector<Range> ranges(4, Range::all()); |
|
ranges[0].start = i; |
|
ranges[0].end = i + 1; |
|
normAssert(out(ranges), ref); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_BatchNorm, dnnBackendsAndTargets()); |
|
|
|
class TestLayerFusion : public DNNTestLayer { |
|
public: |
|
static void makeDefaultTestConvolutionLayer(LayerParams& convParams, int in_channels, int num_filters, bool bias_term) |
|
{ |
|
const int kernel_h = 3, kernel_w = 3; |
|
const int pad_h = kernel_h / 2, pad_w = kernel_w / 2; |
|
|
|
convParams.set("kernel_h", kernel_h); |
|
convParams.set("kernel_w", kernel_w); |
|
convParams.set("pad_h", pad_h); |
|
convParams.set("pad_w", pad_w); |
|
convParams.set("num_output", num_filters); |
|
convParams.set("bias_term", bias_term); |
|
convParams.type = "Convolution"; |
|
convParams.name = "convolution"; |
|
|
|
float conv_init_magnitude = 1.0f / in_channels / kernel_h / kernel_w; |
|
int weightsShape[] = {num_filters, in_channels, kernel_h, kernel_w}; |
|
Mat weights(4, &weightsShape[0], CV_32F); |
|
randu(weights, -conv_init_magnitude, conv_init_magnitude); |
|
convParams.blobs.push_back(weights); |
|
if (bias_term) |
|
{ |
|
Mat bias(1, num_filters, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
convParams.blobs.push_back(bias); |
|
} |
|
} |
|
|
|
static void makeDefaultTestActivationLayer(LayerParams& activationParams, const std::string& type, int in_channels) |
|
{ |
|
activationParams.type = type; |
|
activationParams.name = "activation"; |
|
if (activationParams.type == "ReLU") |
|
activationParams.set("negative_slope", 0.1f); |
|
else if (activationParams.type == "Power") |
|
{ |
|
activationParams.set("power", 2.0f); |
|
activationParams.set("scale", 0.5f); |
|
activationParams.set("shift", 0.3f); |
|
} |
|
else if (activationParams.type == "ReLU6") |
|
{ |
|
activationParams.set("min_value", -1.0f); |
|
activationParams.set("max_value", 1.0f); |
|
} |
|
else if (activationParams.type == "ChannelsPReLU") |
|
{ |
|
Mat scales(1, in_channels, CV_32F); |
|
randu(scales, -1.0f, 1.0f); |
|
activationParams.blobs.push_back(scales); |
|
} |
|
else if (activationParams.type == "Exp") |
|
{ |
|
activationParams.set("base", -1.0f); |
|
activationParams.set("scale", 0.3f); |
|
activationParams.set("shift", 0.6f); |
|
} |
|
} |
|
|
|
static void makeDefaultTestEltwiseLayer(LayerParams& eltwiseParams, const std::string& op, bool withCoefficients) |
|
{ |
|
eltwiseParams.type = "Eltwise"; |
|
eltwiseParams.name = "eltwise"; |
|
eltwiseParams.set("operation", op); |
|
if (withCoefficients) |
|
{ |
|
float coeff[] = {0.3f, 0.5f}; |
|
eltwiseParams.set("coeff", DictValue::arrayReal<float*>(coeff, 2)); |
|
} |
|
} |
|
|
|
static void test(Mat& input, Net& net, Backend backendId, Target targetId, std::vector<int> expectedFusedLayers = std::vector<int>(), double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
DNNTestLayer::checkBackend(backendId, targetId); |
|
|
|
net.enableFusion(false); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.setPreferableTarget(DNN_TARGET_CPU); |
|
net.setInput(input); |
|
Mat outputReference = net.forward().clone(); |
|
std::vector<double> refTimings; |
|
net.getPerfProfile(refTimings); |
|
for (int i = 0; i < refTimings.size(); i++) |
|
{ |
|
CV_Assert(refTimings[i] != 0.0); |
|
} |
|
|
|
net.enableFusion(true); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
net.setInput(input); |
|
Mat outputTest = net.forward().clone(); |
|
std::vector<double> testTimings; |
|
net.getPerfProfile(testTimings); |
|
for (int i = 0; i < testTimings.size(); i++) |
|
{ |
|
if(std::find(expectedFusedLayers.begin(), expectedFusedLayers.end(), i + 1) != expectedFusedLayers.end()) |
|
{ |
|
EXPECT_EQ(testTimings[i], 0.0); |
|
} |
|
else |
|
{ |
|
EXPECT_NE(testTimings[i], 0.0); |
|
} |
|
} |
|
|
|
// double ref_max_value, ref_min_value; |
|
// minMaxLoc(outputReference.reshape(1, 1), &ref_min_value, &ref_max_value); |
|
// std::cout << "reference range: " << ref_min_value << ' ' << ref_max_value << std::endl; |
|
|
|
double default_l1, default_lInf; |
|
DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf); |
|
if (l1 == 0.0) |
|
l1 = default_l1; |
|
if (lInf == 0.0) |
|
lInf = default_lInf; |
|
normAssert(outputReference, outputTest, "", l1, lInf); |
|
} |
|
|
|
static testing::internal::ParamGenerator<std::string> eltwiseOpList() |
|
{ |
|
// TODO: automate list generation |
|
return Values("sum", "max", "min", "prod", "div"); |
|
} |
|
|
|
static testing::internal::ParamGenerator<std::string> activationLayersList() |
|
{ |
|
// TODO: automate list generation |
|
return Values("ReLU", "ReLU6", "ChannelsPReLU", "TanH", "Swish", "Mish", "Sigmoid", "ELU", "AbsVal", "BNLL", "Power", "Exp"); |
|
} |
|
|
|
static testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsForFusionTests() |
|
{ |
|
return dnnBackendsAndTargets(false, false, true, false, true, false); // OCV OpenCL + OCV CPU + CUDA |
|
} |
|
}; |
|
|
|
typedef TestWithParam<tuple<bool, std::string, tuple<Backend, Target> > > ConvolutionActivationFusion; |
|
TEST_P(ConvolutionActivationFusion, Accuracy) |
|
{ |
|
// input |
|
// | |
|
// ----------------------- |
|
// | convolution | |
|
// ----------------------- |
|
// | |
|
// ----------------------- |
|
// | activation | |
|
// ----------------------- |
|
// | |
|
// output |
|
|
|
const int batch_size = 2, in_channels = 16; |
|
const int in_height = 16, in_width = 16; |
|
int inputShape[] = {batch_size, in_channels, in_height, in_width}; |
|
Mat input(4, &inputShape[0], CV_32F); |
|
randu(input, 1.0f, 2.0f); |
|
|
|
bool bias_term = get<0>(GetParam()); |
|
LayerParams convParams; |
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); |
|
|
|
std::string actType = get<1>(GetParam()); |
|
LayerParams activationParams; |
|
TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels); |
|
|
|
Backend backendId = get<0>(get<2>(GetParam())); |
|
Target targetId = get<1>(get<2>(GetParam())); |
|
|
|
Net net; |
|
int convId = net.addLayer(convParams.name, convParams.type, convParams); |
|
int activId = net.addLayerToPrev(activationParams.name, activationParams.type, activationParams); |
|
net.connect(0, 0, convId, 0); |
|
|
|
std::vector<int> expectedFusedLayers; |
|
if (backendId == DNN_BACKEND_OPENCV) |
|
{ |
|
if (targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16) |
|
expectedFusedLayers.push_back(activId); // all activations are fused |
|
else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/) |
|
expectedFusedLayers.push_back(activId); |
|
} |
|
} |
|
else if (backendId == DNN_BACKEND_CUDA) |
|
{ |
|
if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" || |
|
actType == "Mish" || actType == "Sigmoid" || actType == "Power") |
|
expectedFusedLayers.push_back(activId); |
|
} |
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); |
|
} |
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationFusion, Combine( |
|
/* bias */ testing::Bool(), |
|
/* activation */ TestLayerFusion::activationLayersList(), |
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests() |
|
)); |
|
|
|
typedef TestWithParam<tuple<bool, std::string, bool, tuple<Backend, Target> > > ConvolutionEltwiseFusion; |
|
TEST_P(ConvolutionEltwiseFusion, Accuracy) |
|
{ |
|
// input |
|
// | |
|
// ------------------------------- |
|
// | | |
|
// | --------------- |
|
// | | convolution | |
|
// | --------------- |
|
// | | |
|
// | ---------------- | |
|
// --------| eltwise op |------- |
|
// ---------------- |
|
// | |
|
// output |
|
|
|
const int batch_size = 2, in_channels = 16; |
|
const int in_height = 16, in_width = 16; |
|
int inputShape[] = {batch_size, in_channels, in_height, in_width}; |
|
Mat input(4, &inputShape[0], CV_32F); |
|
randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div |
|
|
|
bool bias_term = get<0>(GetParam()); |
|
LayerParams convParams; |
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); |
|
|
|
std::string eltwiseOp = get<1>(GetParam()); |
|
bool weightedEltwise = get<2>(GetParam()); |
|
if (eltwiseOp != "sum" && weightedEltwise) |
|
throw SkipTestException("weighted eltwise not supported"); |
|
LayerParams eltwiseParams; |
|
TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise); |
|
|
|
Net net; |
|
int convId = net.addLayer(convParams.name, convParams.type, convParams); |
|
int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams); |
|
net.connect(0, 0, convId, 0); |
|
net.connect(convId, 0, eltwiseId, 0); |
|
net.connect(0, 0, eltwiseId, 1); |
|
|
|
Backend backendId = get<0>(get<3>(GetParam())); |
|
Target targetId = get<1>(get<3>(GetParam())); |
|
|
|
std::vector<int> expectedFusedLayers; |
|
if (backendId == DNN_BACKEND_CUDA && eltwiseOp == "sum" && !weightedEltwise) |
|
expectedFusedLayers.push_back(eltwiseId); |
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); |
|
} |
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseFusion, Combine( |
|
/* bias */ testing::Bool(), |
|
/* eltwise op */ TestLayerFusion::eltwiseOpList(), |
|
/* eltwise weighted */ testing::Bool(), |
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests() |
|
)); |
|
|
|
typedef TestWithParam<tuple<bool, std::string, bool, std::string, tuple<Backend, Target> > > ConvolutionEltwiseActivationFusion; |
|
TEST_P(ConvolutionEltwiseActivationFusion, Accuracy) |
|
{ |
|
// input |
|
// | |
|
// ------------------------------- |
|
// | | |
|
// | --------------- |
|
// | | convolution | |
|
// | --------------- |
|
// | | |
|
// | ---------------- | |
|
// --------| eltwise op |------- |
|
// ---------------- |
|
// | |
|
// ---------------- |
|
// | activation | |
|
// ---------------- |
|
// | |
|
// output |
|
|
|
const int batch_size = 2, in_channels = 16; |
|
const int in_height = 16, in_width = 16; |
|
int inputShape[] = {batch_size, in_channels, in_height, in_width}; |
|
Mat input(4, &inputShape[0], CV_32F); |
|
randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div |
|
|
|
bool bias_term = get<0>(GetParam()); |
|
LayerParams convParams; |
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); |
|
|
|
std::string eltwiseOp = get<1>(GetParam()); |
|
bool weightedEltwise = get<2>(GetParam()); |
|
if (eltwiseOp != "sum" && weightedEltwise) |
|
throw SkipTestException("weighted eltwise not supported"); |
|
LayerParams eltwiseParams; |
|
TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise); |
|
|
|
std::string actType = get<3>(GetParam()); |
|
LayerParams activationParams; |
|
TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels); |
|
|
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
Net net; |
|
int convId = net.addLayer(convParams.name, convParams.type, convParams); |
|
int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams); |
|
int activId = net.addLayer(activationParams.name, activationParams.type, activationParams); |
|
net.connect(0, 0, convId, 0); |
|
net.connect(convId, 0, eltwiseId, 0); |
|
net.connect(0, 0, eltwiseId, 1); |
|
net.connect(eltwiseId, 0, activId, 0); |
|
|
|
std::vector<int> expectedFusedLayers; |
|
if (backendId == DNN_BACKEND_OPENCV) |
|
{ |
|
if (targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16) |
|
expectedFusedLayers.push_back(activId); // activation is fused with eltwise layer |
|
else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
if (eltwiseOp == "sum" && !weightedEltwise && |
|
(actType == "ReLU" || actType == "ChannelsPReLU" /*|| actType == "Power"*/) |
|
) |
|
{ |
|
expectedFusedLayers.push_back(eltwiseId); |
|
expectedFusedLayers.push_back(activId); |
|
} |
|
} |
|
} |
|
else if(backendId == DNN_BACKEND_CUDA) |
|
{ |
|
if (eltwiseOp == "sum" && !weightedEltwise) |
|
{ |
|
expectedFusedLayers.push_back(eltwiseId); |
|
if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" || |
|
actType == "Mish" || actType == "Sigmoid" || actType == "Power") |
|
expectedFusedLayers.push_back(activId); |
|
} |
|
} |
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); |
|
} |
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseActivationFusion, Combine( |
|
/* bias */ testing::Bool(), |
|
/* eltwise op */ TestLayerFusion::eltwiseOpList(), |
|
/* eltwise weighted */ testing::Bool(), |
|
/* activation */ TestLayerFusion::activationLayersList(), |
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests() |
|
)); |
|
|
|
typedef TestWithParam<tuple<bool, std::string, std::string, bool, tuple<Backend, Target> > > ConvolutionActivationEltwiseFusion; |
|
TEST_P(ConvolutionActivationEltwiseFusion, Accuracy) |
|
{ |
|
// input |
|
// | |
|
// ------------------------------- |
|
// | | |
|
// | ---------------- |
|
// | | convolution | |
|
// | ---------------- |
|
// | | |
|
// | ---------------- |
|
// | | activation | |
|
// | ---------------- |
|
// | | |
|
// | ---------------- | |
|
// --------| eltwise sum |------- |
|
// ---------------- |
|
// | |
|
|
|
const int batch_size = 2, in_channels = 16; |
|
const int in_height = 16, in_width = 16; |
|
int inputShape[] = {batch_size, in_channels, in_height, in_width}; |
|
Mat input(4, &inputShape[0], CV_32F); |
|
randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div |
|
|
|
bool bias_term = get<0>(GetParam()); |
|
LayerParams convParams; |
|
TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); |
|
|
|
std::string actType = get<1>(GetParam()); |
|
LayerParams activationParams; |
|
TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels); |
|
|
|
std::string eltwiseOp = get<2>(GetParam()); |
|
bool weightedEltwise = get<3>(GetParam()); |
|
if (eltwiseOp != "sum" && weightedEltwise) |
|
throw SkipTestException("weighted eltwise not supported"); |
|
LayerParams eltwiseParams; |
|
TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise); |
|
|
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
Net net; |
|
int convId = net.addLayer(convParams.name, convParams.type, convParams); |
|
int activId = net.addLayer(activationParams.name, activationParams.type, activationParams); |
|
int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams); |
|
net.connect(0, 0, convId, 0); |
|
net.connect(convId, 0, activId, 0); |
|
net.connect(activId, 0, eltwiseId, 0); |
|
net.connect(0, 0, eltwiseId, 1); |
|
|
|
std::vector<int> expectedFusedLayers; |
|
if (backendId == DNN_BACKEND_OPENCV) |
|
{ |
|
if (targetId == DNN_TARGET_CPU || targetId == DNN_TARGET_CPU_FP16) |
|
expectedFusedLayers.push_back(activId); // activation fused with convolution |
|
else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/) |
|
expectedFusedLayers.push_back(activId); // activation fused with convolution |
|
} |
|
} |
|
else if(backendId == DNN_BACKEND_CUDA) |
|
{ |
|
if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" || |
|
actType == "Mish" || actType == "Sigmoid" || actType == "Power") |
|
{ |
|
expectedFusedLayers.push_back(activId); |
|
if (eltwiseOp == "sum" && !weightedEltwise) |
|
expectedFusedLayers.push_back(eltwiseId); |
|
} |
|
} |
|
TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); |
|
} |
|
INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationEltwiseFusion, Combine( |
|
/* bias */ testing::Bool(), |
|
/* activation */ TestLayerFusion::activationLayersList(), |
|
/* eltwise op */ TestLayerFusion::eltwiseOpList(), |
|
/* eltwise weighted */ testing::Bool(), |
|
TestLayerFusion::dnnBackendsAndTargetsForFusionTests() |
|
)); |
|
|
|
}} // namespace
|
|
|