Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

380 lines
15 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); }
Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoBeliefPropagation>(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace cuda { namespace device
{
namespace stereobp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
template<typename T, typename D>
void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
template<typename T>
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
template <typename T>
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
template <typename T>
void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
template <typename T>
void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
const PtrStepSz<short>& disp, cudaStream_t stream);
}
}}}
namespace
{
class StereoBPImpl : public cuda::StereoBeliefPropagation
{
public:
StereoBPImpl(int ndisp, int iters, int levels, int msg_type);
void compute(InputArray left, InputArray right, OutputArray disparity);
void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
void compute(InputArray data, OutputArray disparity, Stream& stream);
int getMinDisparity() const { return 0; }
void setMinDisparity(int /*minDisparity*/) {}
int getNumDisparities() const { return ndisp_; }
void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
int getBlockSize() const { return 0; }
void setBlockSize(int /*blockSize*/) {}
int getSpeckleWindowSize() const { return 0; }
void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
int getSpeckleRange() const { return 0; }
void setSpeckleRange(int /*speckleRange*/) {}
int getDisp12MaxDiff() const { return 0; }
void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
int getNumIters() const { return iters_; }
void setNumIters(int iters) { iters_ = iters; }
int getNumLevels() const { return levels_; }
void setNumLevels(int levels) { levels_ = levels; }
double getMaxDataTerm() const { return max_data_term_; }
void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
double getDataWeight() const { return data_weight_; }
void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
double getMaxDiscTerm() const { return max_disc_term_; }
void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
double getDiscSingleJump() const { return disc_single_jump_; }
void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
int getMsgType() const { return msg_type_; }
void setMsgType(int msg_type) { msg_type_ = msg_type; }
private:
void init(Stream& stream);
void calcBP(OutputArray disp, Stream& stream);
int ndisp_;
int iters_;
int levels_;
float max_data_term_;
float data_weight_;
float max_disc_term_;
float disc_single_jump_;
int msg_type_;
float scale_;
int rows_, cols_;
std::vector<int> cols_all_, rows_all_;
GpuMat u_, d_, l_, r_, u2_, d2_, l2_, r2_;
std::vector<GpuMat> datas_;
GpuMat outBuf_;
};
const float DEFAULT_MAX_DATA_TERM = 10.0f;
const float DEFAULT_DATA_WEIGHT = 0.07f;
const float DEFAULT_MAX_DISC_TERM = 1.7f;
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
StereoBPImpl::StereoBPImpl(int ndisp, int iters, int levels, int msg_type) :
ndisp_(ndisp), iters_(iters), levels_(levels),
max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
msg_type_(msg_type)
{
}
void StereoBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
{
compute(left, right, disparity, Stream::Null());
}
void StereoBPImpl::compute(InputArray _left, InputArray _right, OutputArray disparity, Stream& stream)
{
using namespace cv::cuda::device::stereobp;
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
static const comp_data_t comp_data_callers[2][5] =
{
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
};
scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
GpuMat left = _left.getGpuMat();
GpuMat right = _right.getGpuMat();
CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
CV_Assert( left.size() == right.size() && left.type() == right.type() );
rows_ = left.rows;
cols_ = left.cols;
const int divisor = (int) pow(2.f, levels_ - 1.0f);
const int lowest_cols = cols_ / divisor;
const int lowest_rows = rows_ / divisor;
const int min_image_dim_size = 2;
CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
init(stream);
datas_[0].create(rows_ * ndisp_, cols_, msg_type_);
comp_data_callers[msg_type_ == CV_32F][left.channels()](left, right, datas_[0], StreamAccessor::getStream(stream));
calcBP(disparity, stream);
}
void StereoBPImpl::compute(InputArray _data, OutputArray disparity, Stream& stream)
{
scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
GpuMat data = _data.getGpuMat();
CV_Assert( (data.type() == msg_type_) && (data.rows % ndisp_ == 0) );
rows_ = data.rows / ndisp_;
cols_ = data.cols;
const int divisor = (int) pow(2.f, levels_ - 1.0f);
const int lowest_cols = cols_ / divisor;
const int lowest_rows = rows_ / divisor;
const int min_image_dim_size = 2;
CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
init(stream);
data.copyTo(datas_[0], stream);
calcBP(disparity, stream);
}
void StereoBPImpl::init(Stream& stream)
{
using namespace cv::cuda::device::stereobp;
u_.create(rows_ * ndisp_, cols_, msg_type_);
d_.create(rows_ * ndisp_, cols_, msg_type_);
l_.create(rows_ * ndisp_, cols_, msg_type_);
r_.create(rows_ * ndisp_, cols_, msg_type_);
if (levels_ & 1)
{
//can clear less area
u_.setTo(0, stream);
d_.setTo(0, stream);
l_.setTo(0, stream);
r_.setTo(0, stream);
}
if (levels_ > 1)
{
int less_rows = (rows_ + 1) / 2;
int less_cols = (cols_ + 1) / 2;
u2_.create(less_rows * ndisp_, less_cols, msg_type_);
d2_.create(less_rows * ndisp_, less_cols, msg_type_);
l2_.create(less_rows * ndisp_, less_cols, msg_type_);
r2_.create(less_rows * ndisp_, less_cols, msg_type_);
if ((levels_ & 1) == 0)
{
u2_.setTo(0, stream);
d2_.setTo(0, stream);
l2_.setTo(0, stream);
r2_.setTo(0, stream);
}
}
load_constants(ndisp_, max_data_term_, scale_ * data_weight_, scale_ * max_disc_term_, scale_ * disc_single_jump_);
datas_.resize(levels_);
cols_all_.resize(levels_);
rows_all_.resize(levels_);
cols_all_[0] = cols_;
rows_all_[0] = rows_;
}
void StereoBPImpl::calcBP(OutputArray disp, Stream& _stream)
{
using namespace cv::cuda::device::stereobp;
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
static const data_step_down_t data_step_down_callers[2] =
{
data_step_down_gpu<short>, data_step_down_gpu<float>
};
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
static const level_up_messages_t level_up_messages_callers[2] =
{
level_up_messages_gpu<short>, level_up_messages_gpu<float>
};
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
static const calc_all_iterations_t calc_all_iterations_callers[2] =
{
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
};
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
static const output_t output_callers[2] =
{
output_gpu<short>, output_gpu<float>
};
const int funcIdx = msg_type_ == CV_32F;
cudaStream_t stream = StreamAccessor::getStream(_stream);
for (int i = 1; i < levels_; ++i)
{
cols_all_[i] = (cols_all_[i-1] + 1) / 2;
rows_all_[i] = (rows_all_[i-1] + 1) / 2;
datas_[i].create(rows_all_[i] * ndisp_, cols_all_[i], msg_type_);
data_step_down_callers[funcIdx](cols_all_[i], rows_all_[i], rows_all_[i-1], datas_[i-1], datas_[i], stream);
}
PtrStepSzb mus[] = {u_, u2_};
PtrStepSzb mds[] = {d_, d2_};
PtrStepSzb mrs[] = {r_, r2_};
PtrStepSzb mls[] = {l_, l2_};
int mem_idx = (levels_ & 1) ? 0 : 1;
for (int i = levels_ - 1; i >= 0; --i)
{
// for lower level we have already computed messages by setting to zero
if (i != levels_ - 1)
level_up_messages_callers[funcIdx](mem_idx, cols_all_[i], rows_all_[i], rows_all_[i+1], mus, mds, mls, mrs, stream);
calc_all_iterations_callers[funcIdx](cols_all_[i], rows_all_[i], iters_, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas_[i], stream);
mem_idx = (mem_idx + 1) & 1;
}
const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
disp.create(rows_, cols_, dtype);
GpuMat out = disp.getGpuMat();
if (dtype != CV_16SC1)
{
outBuf_.create(rows_, cols_, CV_16SC1);
out = outBuf_;
}
out.setTo(0, _stream);
output_callers[funcIdx](u_, d_, l_, r_, datas_.front(), out, stream);
if (dtype != CV_16SC1)
out.convertTo(disp, dtype, _stream);
}
}
Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type)
{
return makePtr<StereoBPImpl>(ndisp, iters, levels, msg_type);
}
void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
{
ndisp = width / 4;
if ((ndisp & 1) != 0)
ndisp++;
int mm = std::max(width, height);
iters = mm / 100 + 2;
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
if (levels == 0) levels++;
}
#endif /* !defined (HAVE_CUDA) */