mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
16 KiB
478 lines
16 KiB
/* |
|
* jdsample.c |
|
* |
|
* Copyright (C) 1991-1996, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains upsampling routines. |
|
* |
|
* Upsampling input data is counted in "row groups". A row group |
|
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) |
|
* sample rows of each component. Upsampling will normally produce |
|
* max_v_samp_factor pixel rows from each row group (but this could vary |
|
* if the upsampler is applying a scale factor of its own). |
|
* |
|
* An excellent reference for image resampling is |
|
* Digital Image Warping, George Wolberg, 1990. |
|
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
/* Pointer to routine to upsample a single component */ |
|
typedef JMETHOD(void, upsample1_ptr, |
|
(j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); |
|
|
|
/* Private subobject */ |
|
|
|
typedef struct { |
|
struct jpeg_upsampler pub; /* public fields */ |
|
|
|
/* Color conversion buffer. When using separate upsampling and color |
|
* conversion steps, this buffer holds one upsampled row group until it |
|
* has been color converted and output. |
|
* Note: we do not allocate any storage for component(s) which are full-size, |
|
* ie do not need rescaling. The corresponding entry of color_buf[] is |
|
* simply set to point to the input data array, thereby avoiding copying. |
|
*/ |
|
JSAMPARRAY color_buf[MAX_COMPONENTS]; |
|
|
|
/* Per-component upsampling method pointers */ |
|
upsample1_ptr methods[MAX_COMPONENTS]; |
|
|
|
int next_row_out; /* counts rows emitted from color_buf */ |
|
JDIMENSION rows_to_go; /* counts rows remaining in image */ |
|
|
|
/* Height of an input row group for each component. */ |
|
int rowgroup_height[MAX_COMPONENTS]; |
|
|
|
/* These arrays save pixel expansion factors so that int_expand need not |
|
* recompute them each time. They are unused for other upsampling methods. |
|
*/ |
|
UINT8 h_expand[MAX_COMPONENTS]; |
|
UINT8 v_expand[MAX_COMPONENTS]; |
|
} my_upsampler; |
|
|
|
typedef my_upsampler * my_upsample_ptr; |
|
|
|
|
|
/* |
|
* Initialize for an upsampling pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_upsample (j_decompress_ptr cinfo) |
|
{ |
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
|
|
|
/* Mark the conversion buffer empty */ |
|
upsample->next_row_out = cinfo->max_v_samp_factor; |
|
/* Initialize total-height counter for detecting bottom of image */ |
|
upsample->rows_to_go = cinfo->output_height; |
|
} |
|
|
|
|
|
/* |
|
* Control routine to do upsampling (and color conversion). |
|
* |
|
* In this version we upsample each component independently. |
|
* We upsample one row group into the conversion buffer, then apply |
|
* color conversion a row at a time. |
|
*/ |
|
|
|
METHODDEF(void) |
|
sep_upsample (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, |
|
JDIMENSION in_row_groups_avail, |
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, |
|
JDIMENSION out_rows_avail) |
|
{ |
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
|
int ci; |
|
jpeg_component_info * compptr; |
|
JDIMENSION num_rows; |
|
|
|
/* Fill the conversion buffer, if it's empty */ |
|
if (upsample->next_row_out >= cinfo->max_v_samp_factor) { |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Invoke per-component upsample method. Notice we pass a POINTER |
|
* to color_buf[ci], so that fullsize_upsample can change it. |
|
*/ |
|
(*upsample->methods[ci]) (cinfo, compptr, |
|
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), |
|
upsample->color_buf + ci); |
|
} |
|
upsample->next_row_out = 0; |
|
} |
|
|
|
/* Color-convert and emit rows */ |
|
|
|
/* How many we have in the buffer: */ |
|
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); |
|
/* Not more than the distance to the end of the image. Need this test |
|
* in case the image height is not a multiple of max_v_samp_factor: |
|
*/ |
|
if (num_rows > upsample->rows_to_go) |
|
num_rows = upsample->rows_to_go; |
|
/* And not more than what the client can accept: */ |
|
out_rows_avail -= *out_row_ctr; |
|
if (num_rows > out_rows_avail) |
|
num_rows = out_rows_avail; |
|
|
|
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, |
|
(JDIMENSION) upsample->next_row_out, |
|
output_buf + *out_row_ctr, |
|
(int) num_rows); |
|
|
|
/* Adjust counts */ |
|
*out_row_ctr += num_rows; |
|
upsample->rows_to_go -= num_rows; |
|
upsample->next_row_out += num_rows; |
|
/* When the buffer is emptied, declare this input row group consumed */ |
|
if (upsample->next_row_out >= cinfo->max_v_samp_factor) |
|
(*in_row_group_ctr)++; |
|
} |
|
|
|
|
|
/* |
|
* These are the routines invoked by sep_upsample to upsample pixel values |
|
* of a single component. One row group is processed per call. |
|
*/ |
|
|
|
|
|
/* |
|
* For full-size components, we just make color_buf[ci] point at the |
|
* input buffer, and thus avoid copying any data. Note that this is |
|
* safe only because sep_upsample doesn't declare the input row group |
|
* "consumed" until we are done color converting and emitting it. |
|
*/ |
|
|
|
METHODDEF(void) |
|
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
*output_data_ptr = input_data; |
|
} |
|
|
|
|
|
/* |
|
* This is a no-op version used for "uninteresting" components. |
|
* These components will not be referenced by color conversion. |
|
*/ |
|
|
|
METHODDEF(void) |
|
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
*output_data_ptr = NULL; /* safety check */ |
|
} |
|
|
|
|
|
/* |
|
* This version handles any integral sampling ratios. |
|
* This is not used for typical JPEG files, so it need not be fast. |
|
* Nor, for that matter, is it particularly accurate: the algorithm is |
|
* simple replication of the input pixel onto the corresponding output |
|
* pixels. The hi-falutin sampling literature refers to this as a |
|
* "box filter". A box filter tends to introduce visible artifacts, |
|
* so if you are actually going to use 3:1 or 4:1 sampling ratios |
|
* you would be well advised to improve this code. |
|
*/ |
|
|
|
METHODDEF(void) |
|
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; |
|
JSAMPARRAY output_data = *output_data_ptr; |
|
register JSAMPROW inptr, outptr; |
|
register JSAMPLE invalue; |
|
register int h; |
|
JSAMPROW outend; |
|
int h_expand, v_expand; |
|
int inrow, outrow; |
|
|
|
h_expand = upsample->h_expand[compptr->component_index]; |
|
v_expand = upsample->v_expand[compptr->component_index]; |
|
|
|
inrow = outrow = 0; |
|
while (outrow < cinfo->max_v_samp_factor) { |
|
/* Generate one output row with proper horizontal expansion */ |
|
inptr = input_data[inrow]; |
|
outptr = output_data[outrow]; |
|
outend = outptr + cinfo->output_width; |
|
while (outptr < outend) { |
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
|
for (h = h_expand; h > 0; h--) { |
|
*outptr++ = invalue; |
|
} |
|
} |
|
/* Generate any additional output rows by duplicating the first one */ |
|
if (v_expand > 1) { |
|
jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
|
v_expand-1, cinfo->output_width); |
|
} |
|
inrow++; |
|
outrow += v_expand; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical. |
|
* It's still a box filter. |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
JSAMPARRAY output_data = *output_data_ptr; |
|
register JSAMPROW inptr, outptr; |
|
register JSAMPLE invalue; |
|
JSAMPROW outend; |
|
int inrow; |
|
|
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
|
inptr = input_data[inrow]; |
|
outptr = output_data[inrow]; |
|
outend = outptr + cinfo->output_width; |
|
while (outptr < outend) { |
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
|
*outptr++ = invalue; |
|
*outptr++ = invalue; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical. |
|
* It's still a box filter. |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
JSAMPARRAY output_data = *output_data_ptr; |
|
register JSAMPROW inptr, outptr; |
|
register JSAMPLE invalue; |
|
JSAMPROW outend; |
|
int inrow, outrow; |
|
|
|
inrow = outrow = 0; |
|
while (outrow < cinfo->max_v_samp_factor) { |
|
inptr = input_data[inrow]; |
|
outptr = output_data[outrow]; |
|
outend = outptr + cinfo->output_width; |
|
while (outptr < outend) { |
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */ |
|
*outptr++ = invalue; |
|
*outptr++ = invalue; |
|
} |
|
jcopy_sample_rows(output_data, outrow, output_data, outrow+1, |
|
1, cinfo->output_width); |
|
inrow++; |
|
outrow += 2; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. |
|
* |
|
* The upsampling algorithm is linear interpolation between pixel centers, |
|
* also known as a "triangle filter". This is a good compromise between |
|
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4 |
|
* of the way between input pixel centers. |
|
* |
|
* A note about the "bias" calculations: when rounding fractional values to |
|
* integer, we do not want to always round 0.5 up to the next integer. |
|
* If we did that, we'd introduce a noticeable bias towards larger values. |
|
* Instead, this code is arranged so that 0.5 will be rounded up or down at |
|
* alternate pixel locations (a simple ordered dither pattern). |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
JSAMPARRAY output_data = *output_data_ptr; |
|
register JSAMPROW inptr, outptr; |
|
register int invalue; |
|
register JDIMENSION colctr; |
|
int inrow; |
|
|
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
|
inptr = input_data[inrow]; |
|
outptr = output_data[inrow]; |
|
/* Special case for first column */ |
|
invalue = GETJSAMPLE(*inptr++); |
|
*outptr++ = (JSAMPLE) invalue; |
|
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); |
|
|
|
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
|
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */ |
|
invalue = GETJSAMPLE(*inptr++) * 3; |
|
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); |
|
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); |
|
} |
|
|
|
/* Special case for last column */ |
|
invalue = GETJSAMPLE(*inptr); |
|
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); |
|
*outptr++ = (JSAMPLE) invalue; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. |
|
* Again a triangle filter; see comments for h2v1 case, above. |
|
* |
|
* It is OK for us to reference the adjacent input rows because we demanded |
|
* context from the main buffer controller (see initialization code). |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) |
|
{ |
|
JSAMPARRAY output_data = *output_data_ptr; |
|
register JSAMPROW inptr0, inptr1, outptr; |
|
#if BITS_IN_JSAMPLE == 8 |
|
register int thiscolsum, lastcolsum, nextcolsum; |
|
#else |
|
register INT32 thiscolsum, lastcolsum, nextcolsum; |
|
#endif |
|
register JDIMENSION colctr; |
|
int inrow, outrow, v; |
|
|
|
inrow = outrow = 0; |
|
while (outrow < cinfo->max_v_samp_factor) { |
|
for (v = 0; v < 2; v++) { |
|
/* inptr0 points to nearest input row, inptr1 points to next nearest */ |
|
inptr0 = input_data[inrow]; |
|
if (v == 0) /* next nearest is row above */ |
|
inptr1 = input_data[inrow-1]; |
|
else /* next nearest is row below */ |
|
inptr1 = input_data[inrow+1]; |
|
outptr = output_data[outrow++]; |
|
|
|
/* Special case for first column */ |
|
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
|
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
|
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); |
|
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
|
lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
|
|
|
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { |
|
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ |
|
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ |
|
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); |
|
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
|
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); |
|
lastcolsum = thiscolsum; thiscolsum = nextcolsum; |
|
} |
|
|
|
/* Special case for last column */ |
|
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); |
|
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); |
|
} |
|
inrow++; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for upsampling. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_upsampler (j_decompress_ptr cinfo) |
|
{ |
|
my_upsample_ptr upsample; |
|
int ci; |
|
jpeg_component_info * compptr; |
|
boolean need_buffer, do_fancy; |
|
int h_in_group, v_in_group, h_out_group, v_out_group; |
|
|
|
upsample = (my_upsample_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_upsampler)); |
|
cinfo->upsample = (struct jpeg_upsampler *) upsample; |
|
upsample->pub.start_pass = start_pass_upsample; |
|
upsample->pub.upsample = sep_upsample; |
|
upsample->pub.need_context_rows = FALSE; /* until we find out differently */ |
|
|
|
if (cinfo->CCIR601_sampling) /* this isn't supported */ |
|
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
|
|
|
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, |
|
* so don't ask for it. |
|
*/ |
|
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; |
|
|
|
/* Verify we can handle the sampling factors, select per-component methods, |
|
* and create storage as needed. |
|
*/ |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Compute size of an "input group" after IDCT scaling. This many samples |
|
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels. |
|
*/ |
|
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / |
|
cinfo->min_DCT_scaled_size; |
|
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / |
|
cinfo->min_DCT_scaled_size; |
|
h_out_group = cinfo->max_h_samp_factor; |
|
v_out_group = cinfo->max_v_samp_factor; |
|
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ |
|
need_buffer = TRUE; |
|
if (! compptr->component_needed) { |
|
/* Don't bother to upsample an uninteresting component. */ |
|
upsample->methods[ci] = noop_upsample; |
|
need_buffer = FALSE; |
|
} else if (h_in_group == h_out_group && v_in_group == v_out_group) { |
|
/* Fullsize components can be processed without any work. */ |
|
upsample->methods[ci] = fullsize_upsample; |
|
need_buffer = FALSE; |
|
} else if (h_in_group * 2 == h_out_group && |
|
v_in_group == v_out_group) { |
|
/* Special cases for 2h1v upsampling */ |
|
if (do_fancy && compptr->downsampled_width > 2) |
|
upsample->methods[ci] = h2v1_fancy_upsample; |
|
else |
|
upsample->methods[ci] = h2v1_upsample; |
|
} else if (h_in_group * 2 == h_out_group && |
|
v_in_group * 2 == v_out_group) { |
|
/* Special cases for 2h2v upsampling */ |
|
if (do_fancy && compptr->downsampled_width > 2) { |
|
upsample->methods[ci] = h2v2_fancy_upsample; |
|
upsample->pub.need_context_rows = TRUE; |
|
} else |
|
upsample->methods[ci] = h2v2_upsample; |
|
} else if ((h_out_group % h_in_group) == 0 && |
|
(v_out_group % v_in_group) == 0) { |
|
/* Generic integral-factors upsampling method */ |
|
upsample->methods[ci] = int_upsample; |
|
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); |
|
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); |
|
} else |
|
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
|
if (need_buffer) { |
|
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
(JDIMENSION) jround_up((long) cinfo->output_width, |
|
(long) cinfo->max_h_samp_factor), |
|
(JDIMENSION) cinfo->max_v_samp_factor); |
|
} |
|
} |
|
}
|
|
|