mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
11 KiB
314 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/highgui.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
const string FEATURES2D_DIR = "features2d"; |
|
const string IMAGE_FILENAME = "tsukuba.png"; |
|
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors"; |
|
|
|
/****************************************************************************************\ |
|
* Regression tests for feature detectors comparing keypoints. * |
|
\****************************************************************************************/ |
|
|
|
class CV_FeatureDetectorTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) : |
|
name(_name), fdetector(_fdetector) {} |
|
|
|
protected: |
|
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ); |
|
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints ); |
|
|
|
void emptyDataTest(); |
|
void regressionTest(); // TODO test of detect() with mask |
|
|
|
virtual void run( int ); |
|
|
|
string name; |
|
Ptr<FeatureDetector> fdetector; |
|
}; |
|
|
|
void CV_FeatureDetectorTest::emptyDataTest() |
|
{ |
|
// One image. |
|
Mat image; |
|
vector<KeyPoint> keypoints; |
|
try |
|
{ |
|
fdetector->detect( image, keypoints ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
|
|
if( !keypoints.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
// Several images. |
|
vector<Mat> images; |
|
vector<vector<KeyPoint> > keypointCollection; |
|
try |
|
{ |
|
fdetector->detect( images, keypointCollection ); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
} |
|
} |
|
|
|
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) |
|
{ |
|
const float maxPtDif = 1.f; |
|
const float maxSizeDif = 1.f; |
|
const float maxAngleDif = 2.f; |
|
const float maxResponseDif = 0.1f; |
|
|
|
float dist = (float)norm( p1.pt - p2.pt ); |
|
return (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
p1.octave == p2.octave && |
|
p1.class_id == p2.class_id ); |
|
} |
|
|
|
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints ) |
|
{ |
|
const float maxCountRatioDif = 0.01f; |
|
|
|
// Compare counts of validation and calculated keypoints. |
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); |
|
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n", |
|
validKeypoints.size(), calcKeypoints.size() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size()); |
|
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size()); |
|
for( size_t v = 0; v < validKeypoints.size(); v++ ) |
|
{ |
|
int nearestIdx = -1; |
|
float minDist = std::numeric_limits<float>::max(); |
|
|
|
for( size_t c = 0; c < calcKeypoints.size(); c++ ) |
|
{ |
|
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 ); |
|
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt ); |
|
if( curDist < minDist ) |
|
{ |
|
minDist = curDist; |
|
nearestIdx = (int)c; |
|
} |
|
} |
|
|
|
assert( minDist >= 0 ); |
|
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) |
|
badPointCount++; |
|
} |
|
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n", |
|
badPointCount, validKeypoints.size(), calcKeypoints.size() ); |
|
if( badPointCount > 0.9 * commonPointCount ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
return; |
|
} |
|
ts->printf( cvtest::TS::LOG, " - OK\n" ); |
|
} |
|
|
|
void CV_FeatureDetectorTest::regressionTest() |
|
{ |
|
assert( !fdetector.empty() ); |
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
|
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz"; |
|
|
|
// Read the test image. |
|
Mat image = imread( imgFilename ); |
|
if( image.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
FileStorage fs( resFilename, FileStorage::READ ); |
|
|
|
// Compute keypoints. |
|
vector<KeyPoint> calcKeypoints; |
|
fdetector->detect( image, calcKeypoints ); |
|
|
|
if( fs.isOpened() ) // Compare computed and valid keypoints. |
|
{ |
|
// TODO compare saved feature detector params with current ones |
|
|
|
// Read validation keypoints set. |
|
vector<KeyPoint> validKeypoints; |
|
read( fs["keypoints"], validKeypoints ); |
|
if( validKeypoints.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
compareKeypointSets( validKeypoints, calcKeypoints ); |
|
} |
|
else // Write detector parameters and computed keypoints as validation data. |
|
{ |
|
fs.open( resFilename, FileStorage::WRITE ); |
|
if( !fs.isOpened() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
else |
|
{ |
|
fs << "detector_params" << "{"; |
|
fdetector->write( fs ); |
|
fs << "}"; |
|
|
|
write( fs, "keypoints", calcKeypoints ); |
|
} |
|
} |
|
} |
|
|
|
void CV_FeatureDetectorTest::run( int /*start_from*/ ) |
|
{ |
|
if( !fdetector ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
emptyDataTest(); |
|
regressionTest(); |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Tests registrations * |
|
\****************************************************************************************/ |
|
|
|
TEST( Features2d_Detector_BRISK, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-brisk", FeatureDetector::create("BRISK") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_FAST, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-fast", FeatureDetector::create("FAST") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_GFTT, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-gftt", FeatureDetector::create("GFTT") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_Harris, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-harris", FeatureDetector::create("HARRIS") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_MSER, DISABLED_regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-mser", FeatureDetector::create("MSER") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_STAR, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-star", FeatureDetector::create("STAR") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_ORB, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-orb", FeatureDetector::create("ORB") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_KAZE, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-kaze", FeatureDetector::create("KAZE") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_AKAZE, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-akaze", FeatureDetector::create("AKAZE") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_GridFAST, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-grid-fast", FeatureDetector::create("GridFAST") ); |
|
test.safe_run(); |
|
} |
|
|
|
TEST( Features2d_Detector_PyramidFAST, regression ) |
|
{ |
|
CV_FeatureDetectorTest test( "detector-pyramid-fast", FeatureDetector::create("PyramidFAST") ); |
|
test.safe_run(); |
|
}
|
|
|