Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

237 lines
6.5 KiB

#include <iostream>
#include <vector>
#include <iomanip>
#include "opencv2/core/utility.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/video/video.hpp"
using namespace std;
using namespace cv;
using namespace cv::ocl;
typedef unsigned char uchar;
#define LOOP_NUM 10
int64 work_begin = 0;
int64 work_end = 0;
static void workBegin()
{
work_begin = getTickCount();
}
static void workEnd()
{
work_end += (getTickCount() - work_begin);
}
static double getTime()
{
return work_end * 1000. / getTickFrequency();
}
template <typename T> inline T clamp (T x, T a, T b)
{
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
}
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
{
x = clamp(x, a, b);
return c + (d - c) * (x - a) / (b - a);
}
static void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
{
float maxDisplacement = 1.0f;
for (int i = 0; i < u.rows; ++i)
{
const float* ptr_u = u.ptr<float>(i);
const float* ptr_v = v.ptr<float>(i);
for (int j = 0; j < u.cols; ++j)
{
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j]));
if (d > maxDisplacement)
maxDisplacement = d;
}
}
flowField.create(u.size(), CV_8UC4);
for (int i = 0; i < flowField.rows; ++i)
{
const float* ptr_u = u.ptr<float>(i);
const float* ptr_v = v.ptr<float>(i);
Vec4b* row = flowField.ptr<Vec4b>(i);
for (int j = 0; j < flowField.cols; ++j)
{
row[j][0] = 0;
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
row[j][3] = 255;
}
}
}
int main(int argc, const char* argv[])
{
const char* keys =
"{ h | help | false | print help message }"
"{ l | left | | specify left image }"
"{ r | right | | specify right image }"
"{ o | output | tvl1_output.jpg | specify output save path }"
"{ c | camera | 0 | enable camera capturing }"
"{ s | use_cpu | false | use cpu or gpu to process the image }"
"{ v | video | | use video as input }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Usage: pyrlk_optical_flow [options]" << endl;
cout << "Available options:" << endl;
cmd.printMessage();
return EXIT_SUCCESS;
}
string fname0 = cmd.get<string>("l");
string fname1 = cmd.get<string>("r");
string vdofile = cmd.get<string>("v");
string outpath = cmd.get<string>("o");
bool useCPU = cmd.get<bool>("s");
bool useCamera = cmd.get<bool>("c");
int inputName = cmd.get<int>("c");
Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE);
Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE);
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
Mat flow, show_flow;
Mat flow_vec[2];
if (frame0.empty() || frame1.empty())
useCamera = true;
if (useCamera)
{
VideoCapture capture;
Mat frame, frameCopy;
Mat frame0Gray, frame1Gray;
Mat ptr0, ptr1;
if(vdofile.empty())
capture.open( inputName );
else
capture.open(vdofile.c_str());
if(!capture.isOpened())
{
if(vdofile.empty())
cout << "Capture from CAM " << inputName << " didn't work" << endl;
else
cout << "Capture from file " << vdofile << " failed" <<endl;
goto nocamera;
}
cout << "In capture ..." << endl;
for(int i = 0;; i++)
{
if( !capture.read(frame) )
break;
if (i == 0)
{
frame.copyTo( frame0 );
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
}
else
{
if (i%2 == 1)
{
frame.copyTo(frame1);
cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
ptr0 = frame0Gray;
ptr1 = frame1Gray;
}
else
{
frame.copyTo(frame0);
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
ptr0 = frame1Gray;
ptr1 = frame0Gray;
}
if (useCPU)
{
alg->calc(ptr0, ptr1, flow);
split(flow, flow_vec);
}
else
{
oclMat d_flowx, d_flowy;
d_alg(oclMat(ptr0), oclMat(ptr1), d_flowx, d_flowy);
d_flowx.download(flow_vec[0]);
d_flowy.download(flow_vec[1]);
}
if (i%2 == 1)
frame1.copyTo(frameCopy);
else
frame0.copyTo(frameCopy);
getFlowField(flow_vec[0], flow_vec[1], show_flow);
imshow("tvl1 optical flow field", show_flow);
}
if( waitKey( 10 ) >= 0 )
break;
}
capture.release();
}
else
{
nocamera:
oclMat d_flowx, d_flowy;
for(int i = 0; i <= LOOP_NUM; i ++)
{
cout << "loop" << i << endl;
if (i > 0) workBegin();
if (useCPU)
{
alg->calc(frame0, frame1, flow);
split(flow, flow_vec);
}
else
{
d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
d_flowx.download(flow_vec[0]);
d_flowy.download(flow_vec[1]);
}
if (i > 0 && i <= LOOP_NUM)
workEnd();
if (i == LOOP_NUM)
{
if (useCPU)
cout << "average CPU time (noCamera) : ";
else
cout << "average GPU time (noCamera) : ";
cout << getTime() / LOOP_NUM << " ms" << endl;
getFlowField(flow_vec[0], flow_vec[1], show_flow);
imshow("PyrLK [Sparse]", show_flow);
imwrite(outpath, show_flow);
}
}
}
waitKey();
return EXIT_SUCCESS;
}