mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
5.6 KiB
173 lines
5.6 KiB
#!/usr/bin/env python |
|
|
|
from itertools import product |
|
from functools import reduce |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
|
def norm_inf(x, y=None): |
|
def norm(vec): |
|
return np.linalg.norm(vec.flatten(), np.inf) |
|
|
|
x = x.astype(np.float64) |
|
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
|
|
|
|
|
def norm_l1(x, y=None): |
|
def norm(vec): |
|
return np.linalg.norm(vec.flatten(), 1) |
|
|
|
x = x.astype(np.float64) |
|
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
|
|
|
|
|
def norm_l2(x, y=None): |
|
def norm(vec): |
|
return np.linalg.norm(vec.flatten()) |
|
|
|
x = x.astype(np.float64) |
|
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
|
|
|
|
|
def norm_l2sqr(x, y=None): |
|
def norm(vec): |
|
return np.square(vec).sum() |
|
|
|
x = x.astype(np.float64) |
|
return norm(x) if y is None else norm(x - y.astype(np.float64)) |
|
|
|
|
|
def norm_hamming(x, y=None): |
|
def norm(vec): |
|
return sum(bin(i).count('1') for i in vec.flatten()) |
|
|
|
return norm(x) if y is None else norm(np.bitwise_xor(x, y)) |
|
|
|
|
|
def norm_hamming2(x, y=None): |
|
def norm(vec): |
|
def element_norm(element): |
|
binary_str = bin(element).split('b')[-1] |
|
if len(binary_str) % 2 == 1: |
|
binary_str = '0' + binary_str |
|
gen = filter(lambda p: p != '00', |
|
(binary_str[i:i+2] |
|
for i in range(0, len(binary_str), 2))) |
|
return sum(1 for _ in gen) |
|
|
|
return sum(element_norm(element) for element in vec.flatten()) |
|
|
|
return norm(x) if y is None else norm(np.bitwise_xor(x, y)) |
|
|
|
|
|
norm_type_under_test = { |
|
cv.NORM_INF: norm_inf, |
|
cv.NORM_L1: norm_l1, |
|
cv.NORM_L2: norm_l2, |
|
cv.NORM_L2SQR: norm_l2sqr, |
|
cv.NORM_HAMMING: norm_hamming, |
|
cv.NORM_HAMMING2: norm_hamming2 |
|
} |
|
|
|
norm_name = { |
|
cv.NORM_INF: 'inf', |
|
cv.NORM_L1: 'L1', |
|
cv.NORM_L2: 'L2', |
|
cv.NORM_L2SQR: 'L2SQR', |
|
cv.NORM_HAMMING: 'Hamming', |
|
cv.NORM_HAMMING2: 'Hamming2' |
|
} |
|
|
|
|
|
def get_element_types(norm_type): |
|
if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2): |
|
return (np.uint8,) |
|
else: |
|
return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32, |
|
np.float64, np.float16) |
|
|
|
|
|
def generate_vector(shape, dtype): |
|
if np.issubdtype(dtype, np.integer): |
|
return np.random.randint(0, 100, shape).astype(dtype) |
|
else: |
|
return np.random.normal(10., 12.5, shape).astype(dtype) |
|
|
|
|
|
shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7)) |
|
|
|
|
|
class norm_test(NewOpenCVTests): |
|
|
|
def test_norm_for_one_array(self): |
|
np.random.seed(123) |
|
for norm_type, norm in norm_type_under_test.items(): |
|
element_types = get_element_types(norm_type) |
|
for shape, element_type in product(shapes, element_types): |
|
array = generate_vector(shape, element_type) |
|
expected = norm(array) |
|
actual = cv.norm(array, norm_type) |
|
self.assertAlmostEqual( |
|
expected, actual, places=2, |
|
msg='Array {0} of {1} and norm {2}'.format( |
|
array, element_type.__name__, norm_name[norm_type] |
|
) |
|
) |
|
|
|
def test_norm_for_two_arrays(self): |
|
np.random.seed(456) |
|
for norm_type, norm in norm_type_under_test.items(): |
|
element_types = get_element_types(norm_type) |
|
for shape, element_type in product(shapes, element_types): |
|
first = generate_vector(shape, element_type) |
|
second = generate_vector(shape, element_type) |
|
expected = norm(first, second) |
|
actual = cv.norm(first, second, norm_type) |
|
self.assertAlmostEqual( |
|
expected, actual, places=2, |
|
msg='Arrays {0} {1} of type {2} and norm {3}'.format( |
|
first, second, element_type.__name__, |
|
norm_name[norm_type] |
|
) |
|
) |
|
|
|
def test_norm_fails_for_wrong_type(self): |
|
for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2): |
|
with self.assertRaises(Exception, |
|
msg='Type is not checked {0}'.format( |
|
norm_name[norm_type] |
|
)): |
|
cv.norm(np.array([1, 2], dtype=np.int32), norm_type) |
|
|
|
def test_norm_fails_for_array_and_scalar(self): |
|
for norm_type in norm_type_under_test: |
|
with self.assertRaises(Exception, |
|
msg='Exception is not thrown for {0}'.format( |
|
norm_name[norm_type] |
|
)): |
|
cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type) |
|
|
|
def test_norm_fails_for_scalar_and_array(self): |
|
for norm_type in norm_type_under_test: |
|
with self.assertRaises(Exception, |
|
msg='Exception is not thrown for {0}'.format( |
|
norm_name[norm_type] |
|
)): |
|
cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type) |
|
|
|
def test_norm_fails_for_array_and_norm_type_as_scalar(self): |
|
for norm_type in norm_type_under_test: |
|
with self.assertRaises(Exception, |
|
msg='Exception is not thrown for {0}'.format( |
|
norm_name[norm_type] |
|
)): |
|
cv.norm(np.array([3, 4, 5], dtype=np.uint8), |
|
norm_type, normType=norm_type) |
|
|
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|