Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

528 lines
20 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_vkcom.hpp"
#include "../op_webnn.hpp"
#include "../op_timvx.hpp"
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/concat.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class ConcatLayerImpl CV_FINAL : public ConcatLayer
{
public:
ConcatLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
axis = params.get<int>("axis", 1);
padding = params.get<bool>("padding", false);
paddingValue = params.get<int>("padding_value", 0);
zeropoint = params.get<int>("zeropoints", 0);
scale = params.get<float>("scales", 1.0f);
}
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() > 0);
outputs.resize(1, inputs[0]);
int cAxis = normalize_axis(axis, inputs[0]);
int axisSum = 0;
for (size_t i = 0; i < inputs.size(); i++)
{
MatShape curShape = inputs[i];
if (padding)
{
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
{
outputs[0][curAxis] = std::max(outputs[0][curAxis], curShape[curAxis]);
}
}
else
{
CV_Assert(curShape.size() == outputs[0].size());
for (int curAxis = 0; curAxis < outputs[0].size(); curAxis++)
{
if (curAxis != cAxis && outputs[0][curAxis] != curShape[curAxis])
CV_Error(Error::StsBadSize, "Inconsistent shape for ConcatLayer");
}
}
axisSum += curShape[cAxis];
}
outputs[0][cAxis] = axisSum;
return false;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_TIMVX
if (backendId == DNN_BACKEND_TIMVX && haveTimVX() && !padding)
{
if (axis == -1)
return false;
int len = this->type.length();
if (len <= 4)
return false;
if (this->type.substr(len - 4) == "Int8")
return true;
else
return false;
}
#endif
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1 && !padding) || // By channels
(backendId == DNN_BACKEND_WEBNN && !padding) ||
(backendId == DNN_BACKEND_VKCOM && haveVulkan() && !padding);
}
template <class T>
class ChannelConcatInvoker : public ParallelLoopBody
{
public:
std::vector<Mat>* inputs;
Mat* output;
int nstripes;
std::vector<const T*> chptrs;
static void run(std::vector<Mat>& inputs, Mat& output, int nstripes)
{
ChannelConcatInvoker cc;
cc.inputs = &inputs;
cc.output = &output;
cc.nstripes = nstripes;
size_t i, ninputs = inputs.size();
int nchannels = 0, batchsz = output.size[0];
for( i = 0; i < ninputs; i++ )
{
Mat& inp = inputs[i];
CV_Assert( inp.isContinuous() && (inp.type() == CV_32F || inp.type() == CV_16S || inp.type() == CV_8S) &&
inp.dims == 4 && inp.size[0] == output.size[0] &&
inp.size[2] == output.size[2] &&
inp.size[3] == output.size[3] );
nchannels += inp.size[1];
}
CV_Assert( nchannels == output.size[1] );
CV_Assert( output.isContinuous() && (output.type() == CV_32F || output.type() == CV_16S || output.type() == CV_8S) );
cc.chptrs.resize(nchannels*batchsz);
int ofs = 0;
for( i = 0; i < ninputs; i++)
{
Mat& inp = inputs[i];
for( int j = 0; j < batchsz; j++ )
for( int k = 0; k < inp.size[1]; k++ )
{
const T* ptr = inp.ptr<T>(j, k);
cc.chptrs[ofs + j*nchannels + k] = ptr;
}
ofs += inp.size[1];
}
parallel_for_(Range(0, nstripes), cc, nstripes);
}
ChannelConcatInvoker() : inputs(0), output(0), nstripes(0) {}
void operator()(const Range& r) const CV_OVERRIDE
{
size_t planeSize = (size_t)output->size[2]*output->size[3];
size_t nch = chptrs.size();
size_t total = nch*planeSize;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(total, r.end*stripeSize);
const T** ptrs = (const T**)&chptrs[0];
T* outptr = output->ptr<T>();
size_t blockSize0 = 1 << 16;
for( size_t ofs0 = stripeStart; ofs0 < stripeEnd; )
{
size_t ch = ofs0/planeSize;
size_t ofs = ofs0 - ch*planeSize;
size_t blockSize = std::min(blockSize0, planeSize - ofs);
memcpy(outptr + ofs0, ptrs[ch] + ofs, blockSize*sizeof(outptr[0]));
ofs0 += blockSize;
}
}
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
int cAxis = normalize_axis(axis, inputs[0].dims);
if (padding)
return false;
int bottom_concat_axis;
int concat_size = total(shape(inputs[0]), cAxis + 1);
int top_concat_axis = outputs[0].size[cAxis];
int num_concats = total(shape(inputs[0]), 0, cAxis);
int offset_concat_axis = 0;
UMat& outMat = outputs[0];
String buildopt = format(" -DDtype=%s", (use_half) ? "half" : "float");
String kname = format("concat_%s", use_half ? "half" : "float");
for (size_t i = 0; i < inputs.size(); i++)
{
ocl::Kernel kernel(kname.c_str(), ocl::dnn::concat_oclsrc, buildopt);
if (kernel.empty())
return false;
UMat& inpMat = inputs[i];
bottom_concat_axis = inputs[i].size[cAxis];
size_t nthreads = inputs[i].total();
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(inpMat));
kernel.set(2, (int)num_concats);
kernel.set(3, (int)concat_size);
kernel.set(4, (int)top_concat_axis);
kernel.set(5, (int)bottom_concat_axis);
kernel.set(6, (int)offset_concat_axis);
kernel.set(7, ocl::KernelArg::PtrWriteOnly(outMat));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
offset_concat_axis += bottom_concat_axis;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
inputs_arr.depth() != CV_8S,
forward_ocl(inputs_arr, outputs_arr, internals_arr))
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
int cAxis = normalize_axis(axis, inputs[0].dims);
Mat& outMat = outputs[0];
if (padding)
outMat.setTo(paddingValue);
if( cAxis == 1 && outMat.dims == 4 && !padding)
{
int nstripes = getNumThreads();
if (outMat.type() == CV_8S)
ChannelConcatInvoker<int8_t>::run(inputs, outMat, nstripes);
else
ChannelConcatInvoker<float>::run(inputs, outMat, nstripes);
}
else
{
std::vector<Range> ranges(outputs[0].dims, Range::all());
ranges[cAxis].start = 0;
for (size_t i = 0; i < inputs.size(); i++)
{
ranges[cAxis].end = ranges[cAxis].start + inputs[i].size[cAxis];
for (int j = 0; j < outMat.dims; ++j)
{
if (j == cAxis) continue;
ranges[j].start = (outMat.size[j] - inputs[i].size[j]) / 2;
ranges[j].end = ranges[j].start + inputs[i].size[j];
}
inputs[i].copyTo(outMat(&ranges[0]));
ranges[cAxis].start = ranges[cAxis].end;
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
auto concat_axis = normalize_axis(axis, input_wrapper->getRank());
return make_cuda_node<cuda4dnn::ConcatOp>(preferableTarget, std::move(context->stream), concat_axis, padding);
}
#endif
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
{
#ifdef HAVE_VULKAN
vkcom::Tensor in = VkComTensor(input[0]);
int cAxis = normalize_axis(axis, in.dimNum());
std::shared_ptr<vkcom::OpBase> op(new vkcom::OpConcat(cAxis));
return Ptr<BackendNode>(new VkComBackendNode(input, op));
#endif // HAVE_VULKAN
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
std::vector<Halide::Buffer<> > inputBuffers = halideBuffers(input);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
int offset = inputBuffers[0].channels();
Halide::Expr topExpr = select(c < offset,
inputBuffers[0](x, y, c, n),
inputBuffers[1](x, y, c - offset, n));
for (int i = 2; i < input.size(); ++i)
{
offset += inputBuffers[i - 1].channels();
topExpr = select(c < offset, topExpr,
inputBuffers[i](x, y, c - offset, n));
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
InferenceEngine::DataPtr data = ngraphDataNode(inputs[0]);
const int numDims = data->getDims().size();
const int cAxis = normalize_axis(axis, numDims);
std::vector<size_t> maxDims(numDims, 0);
CV_Assert(inputs.size() == nodes.size());
ngraph::OutputVector inp_nodes;
for (int i = 0; i < nodes.size(); ++i)
{
inp_nodes.push_back(nodes[i].dynamicCast<InfEngineNgraphNode>()->node);
std::vector<size_t> inpShape = ngraphDataNode(inputs[i])->getDims();
for (int i = 0; i < numDims; ++i)
maxDims[i] = std::max(maxDims[i], inpShape[i]);
}
for (int i = 0; i < inp_nodes.size(); ++i)
{
bool needPadding = false;
std::vector<size_t> inpShape = ngraphDataNode(inputs[i])->getDims();
std::vector<int64_t> begins(inpShape.size(), 0), ends(inpShape.size(), 0);
for (int j = 0; j < inpShape.size(); ++j)
{
if (j != cAxis && inpShape[j] != maxDims[j])
{
needPadding = true;
begins[j] = static_cast<int64_t>((maxDims[j] - inpShape[j]) / 2);
ends[j] = static_cast<int64_t>(maxDims[j] - inpShape[j] - begins[j]);
}
}
if (needPadding)
{
inp_nodes[i] = std::make_shared<ngraph::op::v1::Pad>(
inp_nodes[i],
std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{begins.size()}, begins.data()),
std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{ends.size()}, ends.data()),
ngraph::op::PadMode::CONSTANT);
}
}
auto concat = std::make_shared<ngraph::op::Concat>(inp_nodes, cAxis);
return Ptr<BackendNode>(new InfEngineNgraphNode(concat));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_TIMVX
virtual Ptr<BackendNode> initTimVX(void* timVXInfo_,
const std::vector<Ptr<BackendWrapper> > &inputsWrapper,
const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
bool isLast) CV_OVERRIDE
{
// tvGraph Initialization.
auto timVxInfo = reinterpret_cast<TimVXInfo *>(timVXInfo_);
CV_Assert(timVxInfo);
Ptr<TimVXGraph> tvGraph = timVxInfo->getGraph();
CV_Assert(tvGraph);
Ptr<tim::vx::Graph> graph = tvGraph->graph;
Ptr<TimVXBackendWrapper> inputWrapper = inputsWrapper[0].dynamicCast<TimVXBackendWrapper>();
// convert axis from OpenCV NCHW toTimVX WHCN.
Mat blob0 = inputWrapper->getMat();
// TODO! support TimVX 5 dim in future.
if(blob0.dims >4)
return Ptr<TimVXBackendNode>();
int cAxis = normalize_axis(axis, blob0.dims);
int tvAxis = blob0.dims - 1 - cAxis;
CV_Assert(tvAxis>= 0);
std::vector<int> inputsIndex, outputsIndex;
int input_index = -1, output_index = -1;
// Input
Ptr<tim::vx::Quantization> tvQuant = Ptr<tim::vx::Quantization>(
new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, scale, zeropoint));
for (int i = 0; i<inputsWrapper.size(); i++)
{
inputWrapper = inputsWrapper[i].dynamicCast<TimVXBackendWrapper>();
if (inputWrapper->isTensor())
{
input_index = tvGraph->getTensorIndex(inputWrapper->getTensor());
if (input_index == -1)
{
// Copy To New inputWrapper
Mat tmp = inputWrapper->getMat();
inputWrapper = Ptr<TimVXBackendWrapper>(new TimVXBackendWrapper(tmp));
}
}
if (!inputWrapper->isTensor())
{
inputWrapper->createTensor(graph,tim::vx::TensorAttribute::INPUT, tvQuant);
input_index = tvGraph->addWrapper(inputWrapper);
}
inputsIndex.push_back(input_index);
}
//Output
CV_Assert(outputsWrapper.size() == 1);
Ptr<TimVXBackendWrapper> outputWrapper = outputsWrapper[0].dynamicCast<TimVXBackendWrapper>();
if (isLast)
{
auto shapeType = getShapeTypeFromMat(outputWrapper->getMat());
// For Graph Output tensor, we need to set tensor shape before createTensor().
outputWrapper->setTensorShape(shapeType);
outputWrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, tvQuant);
}
else
{
outputWrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, tvQuant);
}
output_index = tvGraph->addWrapper(outputWrapper);
outputsIndex.push_back(output_index);
std::shared_ptr<tim::vx::Operation> tvConcate = graph->CreateOperation<tim::vx::ops::Concat>(tvAxis, inputsWrapper.size());
Ptr<TimVXBackendNode> tvBackendNode = new TimVXBackendNode(tvGraph, tvConcate, inputsIndex, outputsIndex);
return tvBackendNode;
}
#endif // HAVE_TIMVX
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
if (padding)
params.set("padding_value", zeropoints[1][0]);
return true;
}
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnGraphBuilder = node->net->builder;
std::vector<ml::Operand> inputsOperand;
for (int i = 0; i < nodes.size(); i++)
{
inputsOperand.push_back(nodes[i].dynamicCast<WebnnBackendNode>()->operand);
}
auto operand = webnnGraphBuilder.Concat(inputsOperand.size(), inputsOperand.data(), axis);
return Ptr<BackendNode>(new WebnnBackendNode(operand));
}
#endif
int zeropoint;
float scale;
};
Ptr<ConcatLayer> ConcatLayer::create(const LayerParams& params)
{
return Ptr<ConcatLayer>(new ConcatLayerImpl(params));
}
}
}