Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

464 lines
17 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Batch Normalization layer.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_webnn.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/batch_norm.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class BatchNormLayerImpl CV_FINAL : public BatchNormLayer
{
public:
Mat origin_weights, origin_bias;
Mat weights_, bias_;
UMat umat_weight, umat_bias;
mutable int dims;
BatchNormLayerImpl(const LayerParams& params)
: dims(-1)
{
setParamsFrom(params);
CV_Assert(blobs.size() >= 2);
hasWeights = params.get<bool>("has_weight", false);
hasBias = params.get<bool>("has_bias", false);
useGlobalStats = params.get<bool>("use_global_stats", true);
if(params.get<bool>("scale_bias", false))
hasWeights = hasBias = true;
epsilon = params.get<float>("eps", 1E-5);
size_t n = blobs[0].total();
CV_Assert(blobs[1].total() == n &&
blobs[0].isContinuous() && blobs[1].isContinuous() &&
blobs[0].type() == CV_32F && blobs[1].type() == CV_32F);
float varMeanScale = 1.f;
if (!hasWeights && !hasBias && blobs.size() > 2 && useGlobalStats) {
CV_Assert(blobs.size() == 3); CV_CheckTypeEQ(blobs[2].type(), CV_32FC1, "");
varMeanScale = blobs[2].at<float>(0);
if (varMeanScale != 0)
varMeanScale = 1/varMeanScale;
}
const int biasBlobIndex = blobs.size() - 1;
const int weightsBlobIndex = biasBlobIndex - hasBias;
if( hasWeights )
{
CV_Assert((size_t)weightsBlobIndex < blobs.size());
const Mat& w = blobs[weightsBlobIndex];
CV_Assert(w.isContinuous() && w.type() == CV_32F && w.total() == (size_t)n);
}
if( hasBias )
{
CV_Assert((size_t)biasBlobIndex < blobs.size());
const Mat& b = blobs[weightsBlobIndex];
CV_Assert(b.isContinuous() && b.type() == CV_32F && b.total() == (size_t)n);
}
const float* meanData = blobs[0].ptr<float>();
const float* stdData = blobs[1].ptr<float>();
const float* weightsData = hasWeights ? blobs[weightsBlobIndex].ptr<float>() : 0;
const float* biasData = hasBias ? blobs[biasBlobIndex].ptr<float>() : 0;
origin_weights.create(1, (int)n, CV_32F);
origin_bias.create(1, (int)n, CV_32F);
float* dstWeightsData = origin_weights.ptr<float>();
float* dstBiasData = origin_bias.ptr<float>();
for (size_t i = 0; i < n; ++i)
{
float w = (hasWeights ? weightsData[i] : 1.0f) / sqrt(stdData[i] * varMeanScale + epsilon);
dstWeightsData[i] = w;
dstBiasData[i] = (hasBias ? biasData[i] : 0.0f) - w * meanData[i] * varMeanScale;
}
}
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
{
origin_weights.reshape(1, 1).copyTo(weights_);
origin_bias.reshape(1, 1).copyTo(bias_);
}
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
{
scale = weights_;
shift = bias_;
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
Mat w, b;
top->getScaleShift(w, b);
if (w.empty() && b.empty())
return false;
const int numChannels = weights_.total();
const int numFusedWeights = w.total();
const int numFusedBias = b.total();
if ((numFusedWeights != numChannels && numFusedWeights != 1 && !w.empty()) ||
(numFusedBias != numChannels && numFusedBias != 1 && !b.empty()))
return false;
if (!w.empty())
{
w = w.reshape(1, 1);
if (numFusedWeights == 1)
{
multiply(weights_, w.at<float>(0), weights_);
multiply(bias_, w.at<float>(0), bias_);
}
else
{
multiply(weights_, w, weights_);
multiply(bias_, w, bias_);
}
}
if (!b.empty())
{
b = b.reshape(1, 1);
if (numFusedBias == 1)
add(bias_, b.at<float>(0), bias_);
else
add(bias_, b.reshape(1, 1), bias_);
}
return true;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
dims = inputs[0].size();
if (!useGlobalStats && inputs[0][0] != 1)
CV_Error(Error::StsNotImplemented, "Batch normalization in training mode with batch size > 1");
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return preferableTarget == DNN_TARGET_CPU || dims == 4;
#endif
return (backendId == DNN_BACKEND_OPENCV) ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide()) ||
backendId == DNN_BACKEND_WEBNN;
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inputs_.depth() == CV_16S);
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
CV_Assert(blobs.size() >= 2);
CV_Assert(inputs.size() == 1);
if (use_half && inputs[0].dims == 2)
return false;
if (umat_weight.empty())
{
weights_.copyTo(umat_weight);
bias_.copyTo(umat_bias);
}
UMat &inpBlob = inputs[0];
int groups = inpBlob.size[0];
int channels = inpBlob.size[1];
int planeSize = 1;
for (size_t i = 2; i < inpBlob.dims; i++) {
planeSize *= inpBlob.size[i];
}
String opts = (use_half) ? " -DDtype=half" : " -DDtype=float";
for (size_t ii = 0; ii < outputs.size(); ii++)
{
if (inpBlob.dims == 2)
{
UMat& src = inputs[ii];
UMat& dst = outputs[ii];
multiply(src, weights_, dst);
add(dst, bias_, dst);
}
else
{
MatShape s = shape(groups * channels, planeSize);
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
String buildopt = format("-DNUM=%d", number) + opts;
String kname = format("batch_norm%d", number);
if (number == 1)
buildopt += format(" -Dconvert_T=convert_%s", use_half ? "half" : "float");
else
buildopt += format(" -Dconvert_T=convert_%s%d", use_half ? "half" : "float", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::batchnorm_oclsrc, buildopt);
if (kernel.empty())
return false;
size_t global[] = { (size_t)s[0], (size_t)(s[1] / number) };
kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
kernel.set(1, (int)s[0]);
kernel.set(2, (int)s[1]);
kernel.set(3, (int)channels);
kernel.set(4, ocl::KernelArg::PtrReadOnly(umat_weight));
kernel.set(5, ocl::KernelArg::PtrReadOnly(umat_bias));
kernel.set(6, ocl::KernelArg::PtrWriteOnly(dst));
bool ret = kernel.run_(2, global, NULL, false);
if (!ret)
return false;
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(blobs.size() >= 2);
CV_Assert(inputs.size() == 1);
Mat &inpBlob = inputs[0];
int planeSize = 1;
for (size_t i = 2; i < inpBlob.dims; i++) {
planeSize *= inpBlob.size[i];
}
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Mat &outBlob = outputs[ii];
for(int num = 0; num < outBlob.size[0]; num++)
{
for (int n = 0; n < outBlob.size[1]; n++)
{
float w = weights_.at<float>(n);
float b = bias_.at<float>(n);
Mat inpBlobPlane(1, planeSize, CV_32F, inpBlob.ptr<float>(num, n));
Mat outBlobPlane(1, planeSize, CV_32F, outBlob.ptr<float>(num, n));
inpBlobPlane.convertTo(outBlobPlane, CV_32F, w, b);
}
}
}
}
void forwardSlice(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const CV_OVERRIDE
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
int i = 0;
float w = weights_.at<float>(cn);
float b = bias_.at<float>(cn);
#if CV_SIMD128
v_float32x4 wV = v_setall_f32(w), bV = v_setall_f32(b);
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_muladd(x0, wV, bV);
x1 = v_muladd(x1, wV, bV);
x2 = v_muladd(x2, wV, bV);
x3 = v_muladd(x3, wV, bV);
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
dstptr[i] = w * srcptr[i] + b;
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
return make_cuda_node<cuda4dnn::BatchNormOp>(preferableTarget, std::move(context->stream), weights_, bias_);
}
#endif
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node) CV_OVERRIDE
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_HALIDE
// attachHalide can work both with Halide::Buffer and Halide::Func. In the
// second case it will be a fusion.
Halide::Func attachHalide(const Halide::Expr& input)
{
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Var x("x"), y("y"), c("c"), n("n");
const int numChannels = weights_.total();
auto weights = wrapToHalideBuffer(weights_, {numChannels});
auto bias = wrapToHalideBuffer(bias_, {numChannels});
top(x, y, c, n) = input * weights(c) + bias(c);
return top;
}
#endif // HAVE_HALIDE
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<size_t> shape(ieInpNode->get_shape().size(), 1);
shape[1] = weights_.total();
auto weight = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), weights_.data);
auto bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), bias_.data);
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2021_2)
auto scale_node = std::make_shared<ngraph::op::v1::Multiply>(ieInpNode, weight, ngraph::op::AutoBroadcastType::NUMPY);
#else
auto scale_node = std::make_shared<ngraph::op::v0::Multiply>(ieInpNode, weight, ngraph::op::AutoBroadcastType::NUMPY);
#endif
auto scale_shift = std::make_shared<ngraph::op::v1::Add>(scale_node, bias, ngraph::op::AutoBroadcastType::NUMPY);
return Ptr<BackendNode>(new InfEngineNgraphNode(scale_shift));
}
#endif // HAVE_DNN_NGRAPH
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
params.set("input_scale", scales[0][0]);
params.set("input_zeropoint", zeropoints[0][0]);
params.set("eps", epsilon);
params.blobs.clear();
params.blobs.push_back(origin_weights);
params.blobs.push_back(origin_bias);
return true;
}
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnInpOperand = node->operand;
auto& webnnGraphBuilder = node->net->builder;
std::vector<int32_t> weights_shape = webnn::getShape(weights_);
ml::Operand weights = webnn::BuildConstant(webnnGraphBuilder, weights_shape, weights_.data, weights_.total()*weights_.elemSize(), ml::OperandType::Float32);
std::vector<int32_t> shape(dims, 1);
shape[1] = weights_shape[1];
ml::Operand weights_reshaped = webnnGraphBuilder.Reshape(weights, shape.data(), shape.size());
ml::Operand mul_res = webnnGraphBuilder.Mul(webnnInpOperand, weights_reshaped);
std::vector<int32_t> bias_shape = webnn::getShape(bias_);
ml::Operand bias = webnn::BuildConstant(webnnGraphBuilder, bias_shape, bias_.data, bias_.total()*bias_.elemSize(), ml::OperandType::Float32);
shape[1] = bias_shape[1];
ml::Operand bias_reshaped = webnnGraphBuilder.Reshape(bias, shape.data(), shape.size());
ml::Operand add_res = webnnGraphBuilder.Add(mul_res, bias_reshaped);
return Ptr<BackendNode>(new WebnnBackendNode(add_res));
}
#endif
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 3*total(inputs[i]);
}
return flops;
}
private:
bool useGlobalStats;
};
Ptr<BatchNormLayer> BatchNormLayer::create(const LayerParams& params)
{
return Ptr<BatchNormLayer>(new BatchNormLayerImpl(params));
}
} // namespace dnn
} // namespace cv