Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

186 lines
6.1 KiB

/* adler32_vmx.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2011 Mark Adler
* Copyright (C) 2017-2023 Mika T. Lindqvist <postmaster@raasu.org>
* Copyright (C) 2021 Adam Stylinski <kungfujesus06@gmail.com>
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef PPC_VMX
#include <altivec.h>
#include "zbuild.h"
#include "zendian.h"
#include "adler32_p.h"
#define vmx_zero() (vec_splat_u32(0))
static inline void vmx_handle_head_or_tail(uint32_t *pair, const uint8_t *buf, size_t len) {
unsigned int i;
for (i = 0; i < len; ++i) {
pair[0] += buf[i];
pair[1] += pair[0];
}
}
static void vmx_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
/* Different taps for the separable components of sums */
const vector unsigned char t0 = {64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49};
const vector unsigned char t1 = {48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33};
const vector unsigned char t2 = {32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17};
const vector unsigned char t3 = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
/* As silly and inefficient as it seems, creating 1 permutation vector to permute
* a 2 element vector from a single load + a subsequent shift is just barely faster
* than doing 2 indexed insertions into zero initialized vectors from unaligned memory. */
const vector unsigned char s0_perm = {0, 1, 2, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
const vector unsigned char shift_vec = vec_sl(vec_splat_u8(8), vec_splat_u8(2));
vector unsigned int adacc, s2acc;
vector unsigned int pair_vec = vec_ld(0, s);
adacc = vec_perm(pair_vec, pair_vec, s0_perm);
#if BYTE_ORDER == LITTLE_ENDIAN
s2acc = vec_sro(pair_vec, shift_vec);
#else
s2acc = vec_slo(pair_vec, shift_vec);
#endif
vector unsigned int zero = vmx_zero();
vector unsigned int s3acc = zero;
vector unsigned int s3acc_0 = zero;
vector unsigned int adacc_prev = adacc;
vector unsigned int adacc_prev_0 = zero;
vector unsigned int s2acc_0 = zero;
vector unsigned int s2acc_1 = zero;
vector unsigned int s2acc_2 = zero;
/* Maintain a running sum of a second half, this might help use break yet another
* data dependency bubble in the sum */
vector unsigned int adacc_0 = zero;
int num_iter = len / 4;
int rem = len & 3;
for (int i = 0; i < num_iter; ++i) {
vector unsigned char d0 = vec_ld(0, buf);
vector unsigned char d1 = vec_ld(16, buf);
vector unsigned char d2 = vec_ld(32, buf);
vector unsigned char d3 = vec_ld(48, buf);
/* The core operation of the loop, basically
* what is being unrolled below */
adacc = vec_sum4s(d0, adacc);
s3acc = vec_add(s3acc, adacc_prev);
s3acc_0 = vec_add(s3acc_0, adacc_prev_0);
s2acc = vec_msum(t0, d0, s2acc);
/* interleave dependent sums in here */
adacc_0 = vec_sum4s(d1, adacc_0);
s2acc_0 = vec_msum(t1, d1, s2acc_0);
adacc = vec_sum4s(d2, adacc);
s2acc_1 = vec_msum(t2, d2, s2acc_1);
s2acc_2 = vec_msum(t3, d3, s2acc_2);
adacc_0 = vec_sum4s(d3, adacc_0);
adacc_prev = adacc;
adacc_prev_0 = adacc_0;
buf += 64;
}
adacc = vec_add(adacc, adacc_0);
s3acc = vec_add(s3acc, s3acc_0);
s3acc = vec_sl(s3acc, vec_splat_u32(6));
if (rem) {
adacc_prev = vec_add(adacc_prev_0, adacc_prev);
adacc_prev = vec_sl(adacc_prev, vec_splat_u32(4));
while (rem--) {
vector unsigned char d0 = vec_ld(0, buf);
adacc = vec_sum4s(d0, adacc);
s3acc = vec_add(s3acc, adacc_prev);
s2acc = vec_msum(t3, d0, s2acc);
adacc_prev = vec_sl(adacc, vec_splat_u32(4));
buf += 16;
}
}
/* Sum up independent second sums */
s2acc = vec_add(s2acc, s2acc_0);
s2acc_2 = vec_add(s2acc_1, s2acc_2);
s2acc = vec_add(s2acc, s2acc_2);
s2acc = vec_add(s2acc, s3acc);
adacc = vec_add(adacc, vec_sld(adacc, adacc, 8));
s2acc = vec_add(s2acc, vec_sld(s2acc, s2acc, 8));
adacc = vec_add(adacc, vec_sld(adacc, adacc, 4));
s2acc = vec_add(s2acc, vec_sld(s2acc, s2acc, 4));
vec_ste(adacc, 0, s);
vec_ste(s2acc, 0, s+1);
}
Z_INTERNAL uint32_t adler32_vmx(uint32_t adler, const uint8_t *buf, size_t len) {
uint32_t sum2;
uint32_t pair[16] ALIGNED_(16);
memset(&pair[2], 0, 14);
int n = NMAX;
unsigned int done = 0, i;
/* Split Adler-32 into component sums, it can be supplied by
* the caller sites (e.g. in a PNG file).
*/
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
pair[0] = adler;
pair[1] = sum2;
/* in case user likes doing a byte at a time, keep it fast */
if (UNLIKELY(len == 1))
return adler32_len_1(adler, buf, sum2);
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (UNLIKELY(buf == NULL))
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (UNLIKELY(len < 16))
return adler32_len_16(adler, buf, len, sum2);
// Align buffer
unsigned int al = 0;
if ((uintptr_t)buf & 0xf) {
al = 16-((uintptr_t)buf & 0xf);
if (al > len) {
al=len;
}
vmx_handle_head_or_tail(pair, buf, al);
done += al;
/* Rather than rebasing, we can reduce the max sums for the
* first round only */
n -= al;
}
for (i = al; i < len; i += n) {
int remaining = (int)(len-i);
n = MIN(remaining, (i == al) ? n : NMAX);
if (n < 16)
break;
vmx_accum32(pair, buf + i, n / 16);
pair[0] %= BASE;
pair[1] %= BASE;
done += (n / 16) * 16;
}
/* Handle the tail elements. */
if (done < len) {
vmx_handle_head_or_tail(pair, (buf + done), len - done);
pair[0] %= BASE;
pair[1] %= BASE;
}
/* D = B * 65536 + A, see: https://en.wikipedia.org/wiki/Adler-32. */
return (pair[1] << 16) | pair[0];
}
#endif