Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

195 lines
6.9 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
using namespace cv;
using namespace cv::gpu;
using namespace std;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "aloe.png";
class CV_GPU_SURFTest : public cvtest::BaseTest
{
public:
CV_GPU_SURFTest()
{
}
protected:
bool isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2);
int getValidCount(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches);
void compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
const Mat& validDescriptors, const Mat& calcDescriptors);
void emptyDataTest();
void accuracyTest();
virtual void run(int);
};
void CV_GPU_SURFTest::emptyDataTest()
{
SURF_GPU fdetector;
GpuMat image;
vector<KeyPoint> keypoints;
vector<float> descriptors;
try
{
fdetector(image, GpuMat(), keypoints, descriptors);
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
}
if( !keypoints.empty() )
{
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
if( !descriptors.empty() )
{
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty descriptors vector (1).\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
}
bool CV_GPU_SURFTest::isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2)
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
float dist = (float)norm( p1.pt - p2.pt );
return (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
p1.octave == p2.octave &&
p1.class_id == p2.class_id );
}
int CV_GPU_SURFTest::getValidCount(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
const vector<DMatch>& matches)
{
int count = 0;
for (size_t i = 0; i < matches.size(); ++i)
{
const DMatch& m = matches[i];
const KeyPoint& kp1 = keypoints1[m.queryIdx];
const KeyPoint& kp2 = keypoints2[m.trainIdx];
if (isSimilarKeypoints(kp1, kp2))
++count;
}
return count;
}
void CV_GPU_SURFTest::compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
const Mat& validDescriptors, const Mat& calcDescriptors)
{
BruteForceMatcher< L2<float> > matcher;
vector<DMatch> matches;
matcher.match(validDescriptors, calcDescriptors, matches);
int validCount = getValidCount(validKeypoints, calcKeypoints, matches);
float validRatio = (float)validCount / matches.size();
if (validRatio < 0.5f)
{
ts->printf(cvtest::TS::LOG, "Bad accuracy - %f.\n", validRatio);
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
return;
}
}
void CV_GPU_SURFTest::accuracyTest()
{
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
// Read the test image.
Mat image = imread(imgFilename, 0);
if (image.empty())
{
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat mask(image.size(), CV_8UC1, Scalar::all(1));
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0));
// Compute keypoints.
vector<KeyPoint> calcKeypoints;
GpuMat calcDescriptors;
SURF_GPU fdetector; fdetector.extended = false;
fdetector(GpuMat(image), GpuMat(mask), calcKeypoints, calcDescriptors);
// Calc validation keypoints set.
vector<KeyPoint> validKeypoints;
vector<float> validDescriptors;
SURF fdetector_gold; fdetector_gold.extended = false;
fdetector_gold(image, mask, validKeypoints, validDescriptors);
compareKeypointSets(validKeypoints, calcKeypoints,
Mat(validKeypoints.size(), fdetector_gold.descriptorSize(), CV_32F, &validDescriptors[0]), calcDescriptors);
}
void CV_GPU_SURFTest::run( int /*start_from*/ )
{
emptyDataTest();
accuracyTest();
}
TEST(SURF, empty_data_and_accuracy) { CV_GPU_SURFTest test; test.safe_run(); }