mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4500 lines
153 KiB
4500 lines
153 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <climits> |
|
#include <limits> |
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
#include "opencl_kernels_core.hpp" |
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
/****************************************************************************************\ |
|
* sum * |
|
\****************************************************************************************/ |
|
|
|
template <typename T, typename ST> |
|
struct Sum_SIMD |
|
{ |
|
int operator () (const T *, const uchar *, ST *, int, int) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
template <typename ST, typename DT> |
|
inline void addChannels(DT * dst, ST * buf, int cn) |
|
{ |
|
for (int i = 0; i < 4; ++i) |
|
dst[i % cn] += buf[i]; |
|
} |
|
|
|
#if CV_SSE2 |
|
|
|
template <> |
|
struct Sum_SIMD<schar, int> |
|
{ |
|
int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128i v_zero = _mm_setzero_si128(), v_sum = v_zero; |
|
|
|
for ( ; x <= len - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); |
|
__m128i v_half = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, v_src), 8); |
|
|
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_half), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_half), 16)); |
|
|
|
v_half = _mm_srai_epi16(_mm_unpackhi_epi8(v_zero, v_src), 8); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_half), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_half), 16)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src0 + x))), 8); |
|
|
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_src), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_src), 16)); |
|
} |
|
|
|
int CV_DECL_ALIGNED(16) ar[4]; |
|
_mm_store_si128((__m128i*)ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<int, double> |
|
{ |
|
int operator () (const int * src0, const uchar * mask, double * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128d v_zero = _mm_setzero_pd(), v_sum0 = v_zero, v_sum1 = v_zero; |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((__m128i const *)(src0 + x)); |
|
v_sum0 = _mm_add_pd(v_sum0, _mm_cvtepi32_pd(v_src)); |
|
v_sum1 = _mm_add_pd(v_sum1, _mm_cvtepi32_pd(_mm_srli_si128(v_src, 8))); |
|
} |
|
|
|
double CV_DECL_ALIGNED(16) ar[4]; |
|
_mm_store_pd(ar, v_sum0); |
|
_mm_store_pd(ar + 2, v_sum1); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<float, double> |
|
{ |
|
int operator () (const float * src0, const uchar * mask, double * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128d v_zero = _mm_setzero_pd(), v_sum0 = v_zero, v_sum1 = v_zero; |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
{ |
|
__m128 v_src = _mm_loadu_ps(src0 + x); |
|
v_sum0 = _mm_add_pd(v_sum0, _mm_cvtps_pd(v_src)); |
|
v_src = _mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8)); |
|
v_sum1 = _mm_add_pd(v_sum1, _mm_cvtps_pd(v_src)); |
|
} |
|
|
|
double CV_DECL_ALIGNED(16) ar[4]; |
|
_mm_store_pd(ar, v_sum0); |
|
_mm_store_pd(ar + 2, v_sum1); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
|
|
#elif CV_NEON |
|
|
|
template <> |
|
struct Sum_SIMD<uchar, int> |
|
{ |
|
int operator () (const uchar * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
uint32x4_t v_sum = vdupq_n_u32(0u); |
|
|
|
for ( ; x <= len - 16; x += 16) |
|
{ |
|
uint8x16_t v_src = vld1q_u8(src0 + x); |
|
uint16x8_t v_half = vmovl_u8(vget_low_u8(v_src)); |
|
|
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_half)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_half)); |
|
|
|
v_half = vmovl_u8(vget_high_u8(v_src)); |
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_half)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_half)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vmovl_u8(vld1_u8(src0 + x)); |
|
|
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_src)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_src)); |
|
} |
|
|
|
unsigned int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_u32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<schar, int> |
|
{ |
|
int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
int32x4_t v_sum = vdupq_n_s32(0); |
|
|
|
for ( ; x <= len - 16; x += 16) |
|
{ |
|
int8x16_t v_src = vld1q_s8(src0 + x); |
|
int16x8_t v_half = vmovl_s8(vget_low_s8(v_src)); |
|
|
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_half)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_half)); |
|
|
|
v_half = vmovl_s8(vget_high_s8(v_src)); |
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_half)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_half)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vmovl_s8(vld1_s8(src0 + x)); |
|
|
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_src)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_src)); |
|
} |
|
|
|
int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_s32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<ushort, int> |
|
{ |
|
int operator () (const ushort * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
uint32x4_t v_sum = vdupq_n_u32(0u); |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
uint16x8_t v_src = vld1q_u16(src0 + x); |
|
|
|
v_sum = vaddw_u16(v_sum, vget_low_u16(v_src)); |
|
v_sum = vaddw_u16(v_sum, vget_high_u16(v_src)); |
|
} |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
v_sum = vaddw_u16(v_sum, vld1_u16(src0 + x)); |
|
|
|
unsigned int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_u32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct Sum_SIMD<short, int> |
|
{ |
|
int operator () (const short * src0, const uchar * mask, int * dst, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2 && cn != 4)) |
|
return 0; |
|
|
|
int x = 0; |
|
int32x4_t v_sum = vdupq_n_s32(0u); |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
int16x8_t v_src = vld1q_s16(src0 + x); |
|
|
|
v_sum = vaddw_s16(v_sum, vget_low_s16(v_src)); |
|
v_sum = vaddw_s16(v_sum, vget_high_s16(v_src)); |
|
} |
|
|
|
for ( ; x <= len - 4; x += 4) |
|
v_sum = vaddw_s16(v_sum, vld1_s16(src0 + x)); |
|
|
|
int CV_DECL_ALIGNED(16) ar[4]; |
|
vst1q_s32(ar, v_sum); |
|
|
|
addChannels(dst, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
template<typename T, typename ST> |
|
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn ) |
|
{ |
|
const T* src = src0; |
|
if( !mask ) |
|
{ |
|
Sum_SIMD<T, ST> vop; |
|
int i = vop(src0, mask, dst, len, cn), k = cn % 4; |
|
src += i * cn; |
|
|
|
if( k == 1 ) |
|
{ |
|
ST s0 = dst[0]; |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= len - 4; i += 4, src += cn*4 ) |
|
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3]; |
|
#endif |
|
for( ; i < len; i++, src += cn ) |
|
s0 += src[0]; |
|
dst[0] = s0; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
} |
|
else if( k == 3 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
s2 += src[2]; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
dst[2] = s2; |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
src = src0 + i*cn + k; |
|
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; s1 += src[1]; |
|
s2 += src[2]; s3 += src[3]; |
|
} |
|
dst[k] = s0; |
|
dst[k+1] = s1; |
|
dst[k+2] = s2; |
|
dst[k+3] = s3; |
|
} |
|
return len; |
|
} |
|
|
|
int i, nzm = 0; |
|
if( cn == 1 ) |
|
{ |
|
ST s = dst[0]; |
|
for( i = 0; i < len; i++ ) |
|
if( mask[i] ) |
|
{ |
|
s += src[i]; |
|
nzm++; |
|
} |
|
dst[0] = s; |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; |
|
for( i = 0; i < len; i++, src += 3 ) |
|
if( mask[i] ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
s2 += src[2]; |
|
nzm++; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
dst[2] = s2; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
int k = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; k <= cn - 4; k += 4 ) |
|
{ |
|
ST s0, s1; |
|
s0 = dst[k] + src[k]; |
|
s1 = dst[k+1] + src[k+1]; |
|
dst[k] = s0; dst[k+1] = s1; |
|
s0 = dst[k+2] + src[k+2]; |
|
s1 = dst[k+3] + src[k+3]; |
|
dst[k+2] = s0; dst[k+3] = s1; |
|
} |
|
#endif |
|
for( ; k < cn; k++ ) |
|
dst[k] += src[k]; |
|
nzm++; |
|
} |
|
} |
|
return nzm; |
|
} |
|
|
|
|
|
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int); |
|
|
|
static SumFunc getSumFunc(int depth) |
|
{ |
|
static SumFunc sumTab[] = |
|
{ |
|
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s, |
|
(SumFunc)sum16u, (SumFunc)sum16s, |
|
(SumFunc)sum32s, |
|
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f, |
|
0 |
|
}; |
|
|
|
return sumTab[depth]; |
|
} |
|
|
|
template<typename T> |
|
static int countNonZero_(const T* src, int len ) |
|
{ |
|
int i=0, nz = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= len - 4; i += 4 ) |
|
nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0); |
|
#endif |
|
for( ; i < len; i++ ) |
|
nz += src[i] != 0; |
|
return nz; |
|
} |
|
|
|
static int countNonZero8u( const uchar* src, int len ) |
|
{ |
|
int i=0, nz = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2)//5x-6x |
|
{ |
|
__m128i v_zero = _mm_setzero_si128(); |
|
__m128i sum = _mm_setzero_si128(); |
|
|
|
for (; i<=len-16; i+=16) |
|
{ |
|
__m128i r0 = _mm_loadu_si128((const __m128i*)(src+i)); |
|
sum = _mm_add_epi32(sum, _mm_sad_epu8(_mm_sub_epi8(v_zero, _mm_cmpeq_epi8(r0, v_zero)), v_zero)); |
|
} |
|
nz = i - _mm_cvtsi128_si32(_mm_add_epi32(sum, _mm_unpackhi_epi64(sum, sum))); |
|
} |
|
#elif CV_NEON |
|
int len0 = len & -16, blockSize1 = (1 << 8) - 16, blockSize0 = blockSize1 << 6; |
|
uint32x4_t v_nz = vdupq_n_u32(0u); |
|
uint8x16_t v_zero = vdupq_n_u8(0), v_1 = vdupq_n_u8(1); |
|
const uchar * src0 = src; |
|
|
|
while( i < len0 ) |
|
{ |
|
int blockSizei = std::min(len0 - i, blockSize0), j = 0; |
|
|
|
while (j < blockSizei) |
|
{ |
|
int blockSizej = std::min(blockSizei - j, blockSize1), k = 0; |
|
uint8x16_t v_pz = v_zero; |
|
|
|
for( ; k <= blockSizej - 16; k += 16 ) |
|
v_pz = vaddq_u8(v_pz, vandq_u8(vceqq_u8(vld1q_u8(src0 + k), v_zero), v_1)); |
|
|
|
uint16x8_t v_p1 = vmovl_u8(vget_low_u8(v_pz)), v_p2 = vmovl_u8(vget_high_u8(v_pz)); |
|
v_nz = vaddq_u32(vaddl_u16(vget_low_u16(v_p1), vget_high_u16(v_p1)), v_nz); |
|
v_nz = vaddq_u32(vaddl_u16(vget_low_u16(v_p2), vget_high_u16(v_p2)), v_nz); |
|
|
|
src0 += blockSizej; |
|
j += blockSizej; |
|
} |
|
|
|
i += blockSizei; |
|
} |
|
|
|
CV_DECL_ALIGNED(16) unsigned int buf[4]; |
|
vst1q_u32(buf, v_nz); |
|
nz += i - saturate_cast<int>(buf[0] + buf[1] + buf[2] + buf[3]); |
|
#endif |
|
for( ; i < len; i++ ) |
|
nz += src[i] != 0; |
|
return nz; |
|
} |
|
|
|
static int countNonZero16u( const ushort* src, int len ) |
|
{ |
|
int i = 0, nz = 0; |
|
#if CV_SSE2 |
|
if (USE_SSE2) |
|
{ |
|
__m128i v_zero = _mm_setzero_si128 (); |
|
__m128i sum = _mm_setzero_si128(); |
|
|
|
for ( ; i <= len - 8; i += 8) |
|
{ |
|
__m128i r0 = _mm_loadu_si128((const __m128i*)(src + i)); |
|
sum = _mm_add_epi32(sum, _mm_sad_epu8(_mm_sub_epi8(v_zero, _mm_cmpeq_epi16(r0, v_zero)), v_zero)); |
|
} |
|
|
|
nz = i - (_mm_cvtsi128_si32(_mm_add_epi32(sum, _mm_unpackhi_epi64(sum, sum))) >> 1); |
|
src += i; |
|
} |
|
#elif CV_NEON |
|
int len0 = len & -8, blockSize1 = (1 << 15), blockSize0 = blockSize1 << 6; |
|
uint32x4_t v_nz = vdupq_n_u32(0u); |
|
uint16x8_t v_zero = vdupq_n_u16(0), v_1 = vdupq_n_u16(1); |
|
|
|
while( i < len0 ) |
|
{ |
|
int blockSizei = std::min(len0 - i, blockSize0), j = 0; |
|
|
|
while (j < blockSizei) |
|
{ |
|
int blockSizej = std::min(blockSizei - j, blockSize1), k = 0; |
|
uint16x8_t v_pz = v_zero; |
|
|
|
for( ; k <= blockSizej - 8; k += 8 ) |
|
v_pz = vaddq_u16(v_pz, vandq_u16(vceqq_u16(vld1q_u16(src + k), v_zero), v_1)); |
|
|
|
v_nz = vaddq_u32(vaddl_u16(vget_low_u16(v_pz), vget_high_u16(v_pz)), v_nz); |
|
|
|
src += blockSizej; |
|
j += blockSizej; |
|
} |
|
|
|
i += blockSizei; |
|
} |
|
|
|
CV_DECL_ALIGNED(16) unsigned int buf[4]; |
|
vst1q_u32(buf, v_nz); |
|
nz += i - saturate_cast<int>(buf[0] + buf[1] + buf[2] + buf[3]); |
|
#endif |
|
return nz + countNonZero_(src, len - i); |
|
} |
|
|
|
static int countNonZero32s( const int* src, int len ) |
|
{ |
|
int i = 0, nz = 0; |
|
#if CV_SSE2 |
|
if (USE_SSE2) |
|
{ |
|
__m128i v_zero = _mm_setzero_si128 (); |
|
__m128i sum = _mm_setzero_si128(); |
|
|
|
for ( ; i <= len - 4; i += 4) |
|
{ |
|
__m128i r0 = _mm_loadu_si128((const __m128i*)(src + i)); |
|
sum = _mm_add_epi32(sum, _mm_sad_epu8(_mm_sub_epi8(v_zero, _mm_cmpeq_epi32(r0, v_zero)), v_zero)); |
|
} |
|
|
|
nz = i - (_mm_cvtsi128_si32(_mm_add_epi32(sum, _mm_unpackhi_epi64(sum, sum))) >> 2); |
|
src += i; |
|
} |
|
#elif CV_NEON |
|
int len0 = len & -8, blockSize1 = (1 << 15), blockSize0 = blockSize1 << 6; |
|
uint32x4_t v_nz = vdupq_n_u32(0u); |
|
int32x4_t v_zero = vdupq_n_s32(0.0f); |
|
uint16x8_t v_1 = vdupq_n_u16(1u), v_zerou = vdupq_n_u16(0u); |
|
|
|
while( i < len0 ) |
|
{ |
|
int blockSizei = std::min(len0 - i, blockSize0), j = 0; |
|
|
|
while (j < blockSizei) |
|
{ |
|
int blockSizej = std::min(blockSizei - j, blockSize1), k = 0; |
|
uint16x8_t v_pz = v_zerou; |
|
|
|
for( ; k <= blockSizej - 8; k += 8 ) |
|
v_pz = vaddq_u16(v_pz, vandq_u16(vcombine_u16(vmovn_u32(vceqq_s32(vld1q_s32(src + k), v_zero)), |
|
vmovn_u32(vceqq_s32(vld1q_s32(src + k + 4), v_zero))), v_1)); |
|
|
|
v_nz = vaddq_u32(vaddl_u16(vget_low_u16(v_pz), vget_high_u16(v_pz)), v_nz); |
|
|
|
src += blockSizej; |
|
j += blockSizej; |
|
} |
|
|
|
i += blockSizei; |
|
} |
|
|
|
CV_DECL_ALIGNED(16) unsigned int buf[4]; |
|
vst1q_u32(buf, v_nz); |
|
nz += i - saturate_cast<int>(buf[0] + buf[1] + buf[2] + buf[3]); |
|
#endif |
|
return nz + countNonZero_(src, len - i); |
|
} |
|
|
|
static int countNonZero32f( const float* src, int len ) |
|
{ |
|
int i = 0, nz = 0; |
|
#if CV_SSE2 |
|
if (USE_SSE2) |
|
{ |
|
__m128 v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero = _mm_setzero_si128 (); |
|
__m128i sum = _mm_setzero_si128(); |
|
|
|
for ( ; i <= len - 4; i += 4) |
|
{ |
|
__m128 r0 = _mm_loadu_ps(src + i); |
|
sum = _mm_add_epi32(sum, _mm_sad_epu8(_mm_sub_epi8(v_zero, _mm_castps_si128(_mm_cmpeq_ps(r0, v_zero_f))), v_zero)); |
|
} |
|
|
|
nz = i - (_mm_cvtsi128_si32(_mm_add_epi32(sum, _mm_unpackhi_epi64(sum, sum))) >> 2); |
|
src += i; |
|
} |
|
#elif CV_NEON |
|
int len0 = len & -8, blockSize1 = (1 << 15), blockSize0 = blockSize1 << 6; |
|
uint32x4_t v_nz = vdupq_n_u32(0u); |
|
float32x4_t v_zero = vdupq_n_f32(0.0f); |
|
uint16x8_t v_1 = vdupq_n_u16(1u), v_zerou = vdupq_n_u16(0u); |
|
|
|
while( i < len0 ) |
|
{ |
|
int blockSizei = std::min(len0 - i, blockSize0), j = 0; |
|
|
|
while (j < blockSizei) |
|
{ |
|
int blockSizej = std::min(blockSizei - j, blockSize1), k = 0; |
|
uint16x8_t v_pz = v_zerou; |
|
|
|
for( ; k <= blockSizej - 8; k += 8 ) |
|
v_pz = vaddq_u16(v_pz, vandq_u16(vcombine_u16(vmovn_u32(vceqq_f32(vld1q_f32(src + k), v_zero)), |
|
vmovn_u32(vceqq_f32(vld1q_f32(src + k + 4), v_zero))), v_1)); |
|
|
|
v_nz = vaddq_u32(vaddl_u16(vget_low_u16(v_pz), vget_high_u16(v_pz)), v_nz); |
|
|
|
src += blockSizej; |
|
j += blockSizej; |
|
} |
|
|
|
i += blockSizei; |
|
} |
|
|
|
CV_DECL_ALIGNED(16) unsigned int buf[4]; |
|
vst1q_u32(buf, v_nz); |
|
nz += i - saturate_cast<int>(buf[0] + buf[1] + buf[2] + buf[3]); |
|
#endif |
|
return nz + countNonZero_(src, len - i); |
|
} |
|
|
|
static int countNonZero64f( const double* src, int len ) |
|
{ |
|
return countNonZero_(src, len); |
|
} |
|
|
|
typedef int (*CountNonZeroFunc)(const uchar*, int); |
|
|
|
static CountNonZeroFunc getCountNonZeroTab(int depth) |
|
{ |
|
static CountNonZeroFunc countNonZeroTab[] = |
|
{ |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f), |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0 |
|
}; |
|
|
|
return countNonZeroTab[depth]; |
|
} |
|
|
|
template <typename T, typename ST, typename SQT> |
|
struct SumSqr_SIMD |
|
{ |
|
int operator () (const T *, const uchar *, ST *, SQT *, int, int) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
template <typename T> |
|
inline void addSqrChannels(T * sum, T * sqsum, T * buf, int cn) |
|
{ |
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
sum[i % cn] += buf[i]; |
|
sqsum[i % cn] += buf[4 + i]; |
|
} |
|
} |
|
|
|
#if CV_SSE2 |
|
|
|
template <> |
|
struct SumSqr_SIMD<uchar, int, int> |
|
{ |
|
int operator () (const uchar * src0, const uchar * mask, int * sum, int * sqsum, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128i v_zero = _mm_setzero_si128(), v_sum = v_zero, v_sqsum = v_zero; |
|
const int len_16 = len & ~15; |
|
|
|
for ( ; x <= len_16 - 16; ) |
|
{ |
|
const int len_tmp = min(x + 2048, len_16); |
|
__m128i v_sum_tmp = v_zero; |
|
for ( ; x <= len_tmp - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); |
|
__m128i v_half_0 = _mm_unpacklo_epi8(v_src, v_zero); |
|
__m128i v_half_1 = _mm_unpackhi_epi8(v_src, v_zero); |
|
v_sum_tmp = _mm_add_epi16(v_sum_tmp, _mm_add_epi16(v_half_0, v_half_1)); |
|
__m128i v_half_2 = _mm_unpacklo_epi16(v_half_0, v_half_1); |
|
__m128i v_half_3 = _mm_unpackhi_epi16(v_half_0, v_half_1); |
|
v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_2, v_half_2)); |
|
v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_3, v_half_3)); |
|
} |
|
v_sum = _mm_add_epi32(v_sum, _mm_unpacklo_epi16(v_sum_tmp, v_zero)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_unpackhi_epi16(v_sum_tmp, v_zero)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src0 + x)), v_zero); |
|
__m128i v_half_0 = _mm_unpackhi_epi64(v_src, v_src); |
|
__m128i v_sum_tmp = _mm_add_epi16(v_src, v_half_0); |
|
__m128i v_half_1 = _mm_unpacklo_epi16(v_src, v_half_0); |
|
|
|
v_sum = _mm_add_epi32(v_sum, _mm_unpacklo_epi16(v_sum_tmp, v_zero)); |
|
v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_1, v_half_1)); |
|
} |
|
|
|
int CV_DECL_ALIGNED(16) ar[8]; |
|
_mm_store_si128((__m128i*)ar, v_sum); |
|
_mm_store_si128((__m128i*)(ar + 4), v_sqsum); |
|
|
|
addSqrChannels(sum, sqsum, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
template <> |
|
struct SumSqr_SIMD<schar, int, int> |
|
{ |
|
int operator () (const schar * src0, const uchar * mask, int * sum, int * sqsum, int len, int cn) const |
|
{ |
|
if (mask || (cn != 1 && cn != 2) || !USE_SSE2) |
|
return 0; |
|
|
|
int x = 0; |
|
__m128i v_zero = _mm_setzero_si128(), v_sum = v_zero, v_sqsum = v_zero; |
|
const int len_16 = len & ~15; |
|
|
|
for ( ; x <= len_16 - 16; ) |
|
{ |
|
const int len_tmp = min(x + 2048, len_16); |
|
__m128i v_sum_tmp = v_zero; |
|
for ( ; x <= len_tmp - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); |
|
__m128i v_half_0 = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, v_src), 8); |
|
__m128i v_half_1 = _mm_srai_epi16(_mm_unpackhi_epi8(v_zero, v_src), 8); |
|
v_sum_tmp = _mm_add_epi16(v_sum_tmp, _mm_add_epi16(v_half_0, v_half_1)); |
|
__m128i v_half_2 = _mm_unpacklo_epi16(v_half_0, v_half_1); |
|
__m128i v_half_3 = _mm_unpackhi_epi16(v_half_0, v_half_1); |
|
v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_2, v_half_2)); |
|
v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_3, v_half_3)); |
|
} |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_sum_tmp), 16)); |
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_sum_tmp), 16)); |
|
} |
|
|
|
for ( ; x <= len - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src0 + x))), 8); |
|
__m128i v_half_0 = _mm_unpackhi_epi64(v_src, v_src); |
|
__m128i v_sum_tmp = _mm_add_epi16(v_src, v_half_0); |
|
__m128i v_half_1 = _mm_unpacklo_epi16(v_src, v_half_0); |
|
|
|
v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_sum_tmp), 16)); |
|
v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_1, v_half_1)); |
|
} |
|
|
|
int CV_DECL_ALIGNED(16) ar[8]; |
|
_mm_store_si128((__m128i*)ar, v_sum); |
|
_mm_store_si128((__m128i*)(ar + 4), v_sqsum); |
|
|
|
addSqrChannels(sum, sqsum, ar, cn); |
|
|
|
return x / cn; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
template<typename T, typename ST, typename SQT> |
|
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn ) |
|
{ |
|
const T* src = src0; |
|
|
|
if( !mask ) |
|
{ |
|
SumSqr_SIMD<T, ST, SQT> vop; |
|
int i = vop(src0, mask, sum, sqsum, len, cn), k = cn % 4; |
|
src += i * cn; |
|
|
|
if( k == 1 ) |
|
{ |
|
ST s0 = sum[0]; |
|
SQT sq0 = sqsum[0]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
T v = src[0]; |
|
s0 += v; sq0 += (SQT)v*v; |
|
} |
|
sum[0] = s0; |
|
sqsum[0] = sq0; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
ST s0 = sum[0], s1 = sum[1]; |
|
SQT sq0 = sqsum[0], sq1 = sqsum[1]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
T v0 = src[0], v1 = src[1]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
} |
|
sum[0] = s0; sum[1] = s1; |
|
sqsum[0] = sq0; sqsum[1] = sq1; |
|
} |
|
else if( k == 3 ) |
|
{ |
|
ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; |
|
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
T v0 = src[0], v1 = src[1], v2 = src[2]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
s2 += v2; sq2 += (SQT)v2*v2; |
|
} |
|
sum[0] = s0; sum[1] = s1; sum[2] = s2; |
|
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
src = src0 + k; |
|
ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3]; |
|
SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3]; |
|
for( ; i < len; i++, src += cn ) |
|
{ |
|
T v0, v1; |
|
v0 = src[0], v1 = src[1]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
v0 = src[2], v1 = src[3]; |
|
s2 += v0; sq2 += (SQT)v0*v0; |
|
s3 += v1; sq3 += (SQT)v1*v1; |
|
} |
|
sum[k] = s0; sum[k+1] = s1; |
|
sum[k+2] = s2; sum[k+3] = s3; |
|
sqsum[k] = sq0; sqsum[k+1] = sq1; |
|
sqsum[k+2] = sq2; sqsum[k+3] = sq3; |
|
} |
|
return len; |
|
} |
|
|
|
int i, nzm = 0; |
|
|
|
if( cn == 1 ) |
|
{ |
|
ST s0 = sum[0]; |
|
SQT sq0 = sqsum[0]; |
|
for( i = 0; i < len; i++ ) |
|
if( mask[i] ) |
|
{ |
|
T v = src[i]; |
|
s0 += v; sq0 += (SQT)v*v; |
|
nzm++; |
|
} |
|
sum[0] = s0; |
|
sqsum[0] = sq0; |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; |
|
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; |
|
for( i = 0; i < len; i++, src += 3 ) |
|
if( mask[i] ) |
|
{ |
|
T v0 = src[0], v1 = src[1], v2 = src[2]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
s2 += v2; sq2 += (SQT)v2*v2; |
|
nzm++; |
|
} |
|
sum[0] = s0; sum[1] = s1; sum[2] = s2; |
|
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
T v = src[k]; |
|
ST s = sum[k] + v; |
|
SQT sq = sqsum[k] + (SQT)v*v; |
|
sum[k] = s; sqsum[k] = sq; |
|
} |
|
nzm++; |
|
} |
|
} |
|
return nzm; |
|
} |
|
|
|
|
|
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int); |
|
|
|
static SumSqrFunc getSumSqrTab(int depth) |
|
{ |
|
static SumSqrFunc sumSqrTab[] = |
|
{ |
|
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s, |
|
(SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0 |
|
}; |
|
|
|
return sumSqrTab[depth]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
template <typename T> Scalar ocl_part_sum(Mat m) |
|
{ |
|
CV_Assert(m.rows == 1); |
|
|
|
Scalar s = Scalar::all(0); |
|
int cn = m.channels(); |
|
const T * const ptr = m.ptr<T>(0); |
|
|
|
for (int x = 0, w = m.cols * cn; x < w; ) |
|
for (int c = 0; c < cn; ++c, ++x) |
|
s[c] += ptr[x]; |
|
|
|
return s; |
|
} |
|
|
|
enum { OCL_OP_SUM = 0, OCL_OP_SUM_ABS = 1, OCL_OP_SUM_SQR = 2 }; |
|
|
|
static bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask = noArray(), |
|
InputArray _src2 = noArray(), bool calc2 = false, const Scalar & res2 = Scalar() ) |
|
{ |
|
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR); |
|
|
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
bool doubleSupport = dev.doubleFPConfig() > 0, |
|
haveMask = _mask.kind() != _InputArray::NONE, |
|
haveSrc2 = _src2.kind() != _InputArray::NONE; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1, |
|
mcn = std::max(cn, kercn); |
|
CV_Assert(!haveSrc2 || _src2.type() == type); |
|
int convert_cn = haveSrc2 ? mcn : cn; |
|
|
|
if ( (!doubleSupport && depth == CV_64F) || cn > 4 ) |
|
return false; |
|
|
|
int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1); |
|
size_t wgs = dev.maxWorkGroupSize(); |
|
|
|
int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth), |
|
dtype = CV_MAKE_TYPE(ddepth, cn); |
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" }; |
|
char cvt[2][40]; |
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d" |
|
" -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s", |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth), |
|
ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)), |
|
ocl::typeToStr(ddepth), ddepth, cn, |
|
ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]), |
|
opMap[sum_op], (int)wgs, wgs2_aligned, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
haveMask ? " -D HAVE_MASK" : "", |
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "", |
|
haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn, |
|
haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "", |
|
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", |
|
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert"); |
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(), src2 = _src2.getUMat(), |
|
db(1, dbsize, dtype), mask = _mask.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
dbarg = ocl::KernelArg::PtrWriteOnly(db), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), |
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2); |
|
|
|
if (haveMask) |
|
{ |
|
if (haveSrc2) |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg); |
|
} |
|
else |
|
{ |
|
if (haveSrc2) |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg); |
|
} |
|
|
|
size_t globalsize = ngroups * wgs; |
|
if (k.run(1, &globalsize, &wgs, false)) |
|
{ |
|
typedef Scalar (*part_sum)(Mat m); |
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> }, |
|
func = funcs[ddepth - CV_32S]; |
|
|
|
Mat mres = db.getMat(ACCESS_READ); |
|
if (calc2) |
|
const_cast<Scalar &>(res2) = func(mres.colRange(ngroups, dbsize)); |
|
|
|
res = func(mres.colRange(0, ngroups)); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_sum(Mat &src, Scalar &_res) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
int cn = src.channels(); |
|
if (cn > 4) |
|
return false; |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); |
|
typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *); |
|
ippiSumFuncHint ippiSumHint = |
|
type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R : |
|
type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R : |
|
type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R : |
|
0; |
|
ippiSumFuncNoHint ippiSum = |
|
type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R : |
|
type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R : |
|
type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R : |
|
type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R : |
|
type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R : |
|
type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R : |
|
type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R : |
|
type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R : |
|
type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R : |
|
0; |
|
CV_Assert(!ippiSumHint || !ippiSum); |
|
if( ippiSumHint || ippiSum ) |
|
{ |
|
Ipp64f res[4]; |
|
IppStatus ret = ippiSumHint ? |
|
CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res); |
|
if( ret >= 0 ) |
|
{ |
|
for( int i = 0; i < cn; i++ ) |
|
_res[i] = res[i]; |
|
return true; |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(_res); |
|
#endif |
|
return false; |
|
} |
|
#endif |
|
|
|
} |
|
|
|
cv::Scalar cv::sum( InputArray _src ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
Scalar _res; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_sum(_src, _res, OCL_OP_SUM), |
|
_res) |
|
#endif |
|
|
|
Mat src = _src.getMat(); |
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
SumFunc func = getSumFunc(depth); |
|
CV_Assert( cn <= 4 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Scalar s; |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0; |
|
AutoBuffer<int> _buf; |
|
int* buf = (int*)&s[0]; |
|
size_t esz = 0; |
|
bool blockSum = depth < CV_32S; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
_buf.allocate(cn); |
|
buf = _buf; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
buf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], 0, (uchar*)buf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += buf[k]; |
|
buf[k] = 0; |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
} |
|
} |
|
return s; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_countNonZero( InputArray _src, int & res ) |
|
{ |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), kercn = ocl::predictOptimalVectorWidth(_src); |
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; |
|
|
|
if (depth == CV_64F && !doubleSupport) |
|
return false; |
|
|
|
int dbsize = ocl::Device::getDefault().maxComputeUnits(); |
|
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize(); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, |
|
format("-D srcT=%s -D srcT1=%s -D cn=1 -D OP_COUNT_NON_ZERO" |
|
" -D WGS=%d -D kercn=%d -D WGS2_ALIGNED=%d%s%s", |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), |
|
ocl::typeToStr(depth), (int)wgs, kercn, |
|
wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(), db(1, dbsize, CV_32SC1); |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(), |
|
dbsize, ocl::KernelArg::PtrWriteOnly(db)); |
|
|
|
size_t globalsize = dbsize * wgs; |
|
if (k.run(1, &globalsize, &wgs, true)) |
|
return res = saturate_cast<int>(cv::sum(db.getMat(ACCESS_READ))[0]), true; |
|
return false; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#if defined HAVE_IPP |
|
namespace cv { |
|
|
|
static bool ipp_countNonZero( Mat &src, int &res ) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 < 201801 |
|
// Poor performance of SSE42 |
|
if(cv::ipp::getIppTopFeatures() == ippCPUID_SSE42) |
|
return false; |
|
#endif |
|
|
|
Ipp32s count = 0; |
|
int depth = src.depth(); |
|
|
|
if(src.dims <= 2) |
|
{ |
|
IppStatus status; |
|
IppiSize size = {src.cols*src.channels(), src.rows}; |
|
|
|
if(depth == CV_8U) |
|
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_8u_C1R, (const Ipp8u *)src.ptr(), (int)src.step, size, &count, 0, 0); |
|
else if(depth == CV_32F) |
|
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_32f_C1R, (const Ipp32f *)src.ptr(), (int)src.step, size, &count, 0, 0); |
|
else |
|
return false; |
|
|
|
if(status < 0) |
|
return false; |
|
|
|
res = size.width*size.height - count; |
|
} |
|
else |
|
{ |
|
IppStatus status; |
|
const Mat *arrays[] = {&src, NULL}; |
|
Mat planes[1]; |
|
NAryMatIterator it(arrays, planes, 1); |
|
IppiSize size = {(int)it.size*src.channels(), 1}; |
|
res = 0; |
|
for (size_t i = 0; i < it.nplanes; i++, ++it) |
|
{ |
|
if(depth == CV_8U) |
|
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_8u_C1R, it.planes->ptr<Ipp8u>(), (int)it.planes->step, size, &count, 0, 0); |
|
else if(depth == CV_32F) |
|
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_32f_C1R, it.planes->ptr<Ipp32f>(), (int)it.planes->step, size, &count, 0, 0); |
|
else |
|
return false; |
|
|
|
if(status < 0 || (int)it.planes->total()*src.channels() < count) |
|
return false; |
|
|
|
res += (int)it.planes->total()*src.channels() - count; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
} |
|
#endif |
|
|
|
|
|
int cv::countNonZero( InputArray _src ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
int type = _src.type(), cn = CV_MAT_CN(type); |
|
CV_Assert( cn == 1 ); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
int res = -1; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_countNonZero(_src, res), |
|
res) |
|
#endif |
|
|
|
Mat src = _src.getMat(); |
|
CV_IPP_RUN_FAST(ipp_countNonZero(src, res), res); |
|
|
|
CountNonZeroFunc func = getCountNonZeroTab(src.depth()); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size, nz = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
nz += func( ptrs[0], total ); |
|
|
|
return nz; |
|
} |
|
|
|
#if defined HAVE_IPP |
|
namespace cv |
|
{ |
|
static bool ipp_mean( Mat &src, Mat &mask, Scalar &ret ) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
size_t total_size = src.total(); |
|
int cn = src.channels(); |
|
if (cn > 4) |
|
return false; |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
if( !mask.empty() ) |
|
{ |
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskMeanFuncC1 ippiMean_C1MR = |
|
type == CV_8UC1 ? (ippiMaskMeanFuncC1)ippiMean_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskMeanFuncC1)ippiMean_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskMeanFuncC1)ippiMean_32f_C1MR : |
|
0; |
|
if( ippiMean_C1MR ) |
|
{ |
|
Ipp64f res; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &res) >= 0 ) |
|
{ |
|
ret = Scalar(res); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskMeanFuncC3 ippiMean_C3MR = |
|
type == CV_8UC3 ? (ippiMaskMeanFuncC3)ippiMean_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskMeanFuncC3)ippiMean_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskMeanFuncC3)ippiMean_32f_C3CMR : |
|
0; |
|
if( ippiMean_C3MR ) |
|
{ |
|
Ipp64f res1, res2, res3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &res1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &res2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &res3) >= 0 ) |
|
{ |
|
ret = Scalar(res1, res2, res3); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
typedef IppStatus (CV_STDCALL* ippiMeanFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); |
|
typedef IppStatus (CV_STDCALL* ippiMeanFuncNoHint)(const void*, int, IppiSize, double *); |
|
ippiMeanFuncHint ippiMeanHint = |
|
type == CV_32FC1 ? (ippiMeanFuncHint)ippiMean_32f_C1R : |
|
type == CV_32FC3 ? (ippiMeanFuncHint)ippiMean_32f_C3R : |
|
type == CV_32FC4 ? (ippiMeanFuncHint)ippiMean_32f_C4R : |
|
0; |
|
ippiMeanFuncNoHint ippiMean = |
|
type == CV_8UC1 ? (ippiMeanFuncNoHint)ippiMean_8u_C1R : |
|
type == CV_8UC3 ? (ippiMeanFuncNoHint)ippiMean_8u_C3R : |
|
type == CV_8UC4 ? (ippiMeanFuncNoHint)ippiMean_8u_C4R : |
|
type == CV_16UC1 ? (ippiMeanFuncNoHint)ippiMean_16u_C1R : |
|
type == CV_16UC3 ? (ippiMeanFuncNoHint)ippiMean_16u_C3R : |
|
type == CV_16UC4 ? (ippiMeanFuncNoHint)ippiMean_16u_C4R : |
|
type == CV_16SC1 ? (ippiMeanFuncNoHint)ippiMean_16s_C1R : |
|
type == CV_16SC3 ? (ippiMeanFuncNoHint)ippiMean_16s_C3R : |
|
type == CV_16SC4 ? (ippiMeanFuncNoHint)ippiMean_16s_C4R : |
|
0; |
|
// Make sure only zero or one version of the function pointer is valid |
|
CV_Assert(!ippiMeanHint || !ippiMean); |
|
if( ippiMeanHint || ippiMean ) |
|
{ |
|
Ipp64f res[4]; |
|
IppStatus status = ippiMeanHint ? CV_INSTRUMENT_FUN_IPP(ippiMeanHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiMean, src.ptr(), (int)src.step[0], sz, res); |
|
if( status >= 0 ) |
|
{ |
|
for( int i = 0; i < cn; i++ ) |
|
ret[i] = res[i]; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
#else |
|
return false; |
|
#endif |
|
} |
|
} |
|
#endif |
|
|
|
cv::Scalar cv::mean( InputArray _src, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
Scalar s; |
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_mean(src, mask, s), s) |
|
|
|
SumFunc func = getSumFunc(depth); |
|
|
|
CV_Assert( cn <= 4 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0; |
|
AutoBuffer<int> _buf; |
|
int* buf = (int*)&s[0]; |
|
bool blockSum = depth <= CV_16S; |
|
size_t esz = 0, nz0 = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
_buf.allocate(cn); |
|
buf = _buf; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
buf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn ); |
|
count += nz; |
|
nz0 += nz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += buf[k]; |
|
buf[k] = 0; |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
return s*(nz0 ? 1./nz0 : 0); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION_OPENCL() |
|
|
|
bool haveMask = _mask.kind() != _InputArray::NONE; |
|
int nz = haveMask ? -1 : (int)_src.total(); |
|
Scalar mean(0), stddev(0); |
|
const int cn = _src.channels(); |
|
if (cn > 4) |
|
return false; |
|
|
|
{ |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type); |
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0, |
|
isContinuous = _src.isContinuous(), |
|
isMaskContinuous = _mask.isContinuous(); |
|
const ocl::Device &defDev = ocl::Device::getDefault(); |
|
int groups = defDev.maxComputeUnits(); |
|
if (defDev.isIntel()) |
|
{ |
|
static const int subSliceEUCount = 10; |
|
groups = (groups / subSliceEUCount) * 2; |
|
} |
|
size_t wgs = defDev.maxWorkGroupSize(); |
|
|
|
int ddepth = std::max(CV_32S, depth), sqddepth = std::max(CV_32F, depth), |
|
dtype = CV_MAKE_TYPE(ddepth, cn), |
|
sqdtype = CV_MAKETYPE(sqddepth, cn); |
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
if ( (!doubleSupport && depth == CV_64F) ) |
|
return false; |
|
|
|
char cvt[2][40]; |
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D sqddepth=%d" |
|
" -D sqdstT=%s -D sqdstT1=%s -D convertToSDT=%s -D cn=%d%s%s" |
|
" -D convertToDT=%s -D WGS=%d -D WGS2_ALIGNED=%d%s%s", |
|
ocl::typeToStr(type), ocl::typeToStr(depth), |
|
ocl::typeToStr(dtype), ocl::typeToStr(ddepth), sqddepth, |
|
ocl::typeToStr(sqdtype), ocl::typeToStr(sqddepth), |
|
ocl::convertTypeStr(depth, sqddepth, cn, cvt[0]), |
|
cn, isContinuous ? " -D HAVE_SRC_CONT" : "", |
|
isMaskContinuous ? " -D HAVE_MASK_CONT" : "", |
|
ocl::convertTypeStr(depth, ddepth, cn, cvt[1]), |
|
(int)wgs, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "", |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""); |
|
|
|
ocl::Kernel k("meanStdDev", ocl::core::meanstddev_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
int dbsize = groups * ((haveMask ? CV_ELEM_SIZE1(CV_32S) : 0) + |
|
CV_ELEM_SIZE(sqdtype) + CV_ELEM_SIZE(dtype)); |
|
UMat src = _src.getUMat(), db(1, dbsize, CV_8UC1), mask = _mask.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
dbarg = ocl::KernelArg::PtrWriteOnly(db), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask); |
|
|
|
if (haveMask) |
|
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg, maskarg); |
|
else |
|
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg); |
|
|
|
size_t globalsize = groups * wgs; |
|
|
|
if(!k.run(1, &globalsize, &wgs, false)) |
|
return false; |
|
|
|
typedef Scalar (* part_sum)(Mat m); |
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> }; |
|
Mat dbm = db.getMat(ACCESS_READ); |
|
|
|
mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.ptr())); |
|
stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.ptr() + groups * CV_ELEM_SIZE(dtype))); |
|
|
|
if (haveMask) |
|
nz = saturate_cast<int>(funcs[0](Mat(1, groups, CV_32SC1, dbm.ptr() + |
|
groups * (CV_ELEM_SIZE(dtype) + |
|
CV_ELEM_SIZE(sqdtype))))[0]); |
|
} |
|
|
|
double total = nz != 0 ? 1.0 / nz : 0; |
|
int k, j; |
|
for (int i = 0; i < cn; ++i) |
|
{ |
|
mean[i] *= total; |
|
stddev[i] = std::sqrt(std::max(stddev[i] * total - mean[i] * mean[i] , 0.)); |
|
} |
|
|
|
for( j = 0; j < 2; j++ ) |
|
{ |
|
const double * const sptr = j == 0 ? &mean[0] : &stddev[0]; |
|
_OutputArray _dst = j == 0 ? _mean : _sdv; |
|
if( !_dst.needed() ) |
|
continue; |
|
|
|
if( !_dst.fixedSize() ) |
|
_dst.create(cn, 1, CV_64F, -1, true); |
|
Mat dst = _dst.getMat(); |
|
int dcn = (int)dst.total(); |
|
CV_Assert( dst.type() == CV_64F && dst.isContinuous() && |
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn ); |
|
double* dptr = dst.ptr<double>(); |
|
for( k = 0; k < cn; k++ ) |
|
dptr[k] = sptr[k]; |
|
for( ; k < dcn; k++ ) |
|
dptr[k] = 0; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_OPENVX |
|
namespace cv |
|
{ |
|
static bool openvx_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask) |
|
{ |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size / rows) : 0; |
|
if (src.type() != CV_8UC1|| !mask.empty() || |
|
(src.dims != 2 && !(src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size)) |
|
) |
|
return false; |
|
|
|
try |
|
{ |
|
ivx::Context ctx = ovx::getOpenVXContext(); |
|
#ifndef VX_VERSION_1_1 |
|
if (ctx.vendorID() == VX_ID_KHRONOS) |
|
return false; // Do not use OpenVX meanStdDev estimation for sample 1.0.1 implementation due to lack of accuracy |
|
#endif |
|
|
|
ivx::Image |
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(cols, rows, 1, (vx_int32)(src.step[0])), src.ptr()); |
|
|
|
vx_float32 mean_temp, stddev_temp; |
|
ivx::IVX_CHECK_STATUS(vxuMeanStdDev(ctx, ia, &mean_temp, &stddev_temp)); |
|
|
|
if (_mean.needed()) |
|
{ |
|
if (!_mean.fixedSize()) |
|
_mean.create(1, 1, CV_64F, -1, true); |
|
Mat mean = _mean.getMat(); |
|
CV_Assert(mean.type() == CV_64F && mean.isContinuous() && |
|
(mean.cols == 1 || mean.rows == 1) && mean.total() >= 1); |
|
double *pmean = mean.ptr<double>(); |
|
pmean[0] = mean_temp; |
|
for (int c = 1; c < (int)mean.total(); c++) |
|
pmean[c] = 0; |
|
} |
|
|
|
if (_sdv.needed()) |
|
{ |
|
if (!_sdv.fixedSize()) |
|
_sdv.create(1, 1, CV_64F, -1, true); |
|
Mat stddev = _sdv.getMat(); |
|
CV_Assert(stddev.type() == CV_64F && stddev.isContinuous() && |
|
(stddev.cols == 1 || stddev.rows == 1) && stddev.total() >= 1); |
|
double *pstddev = stddev.ptr<double>(); |
|
pstddev[0] = stddev_temp; |
|
for (int c = 1; c < (int)stddev.total(); c++) |
|
pstddev[c] = 0; |
|
} |
|
} |
|
catch (ivx::RuntimeError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch (ivx::WrapperError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
|
|
return true; |
|
} |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
namespace cv |
|
{ |
|
static bool ipp_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
int cn = src.channels(); |
|
|
|
#if IPP_VERSION_X100 < 201801 |
|
// IPP_DISABLE: C3C functions can read outside of allocated memory |
|
if (cn > 1) |
|
return false; |
|
#endif |
|
|
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) |
|
{ |
|
Ipp64f mean_temp[3]; |
|
Ipp64f stddev_temp[3]; |
|
Ipp64f *pmean = &mean_temp[0]; |
|
Ipp64f *pstddev = &stddev_temp[0]; |
|
Mat mean, stddev; |
|
int dcn_mean = -1; |
|
if( _mean.needed() ) |
|
{ |
|
if( !_mean.fixedSize() ) |
|
_mean.create(cn, 1, CV_64F, -1, true); |
|
mean = _mean.getMat(); |
|
dcn_mean = (int)mean.total(); |
|
pmean = mean.ptr<Ipp64f>(); |
|
} |
|
int dcn_stddev = -1; |
|
if( _sdv.needed() ) |
|
{ |
|
if( !_sdv.fixedSize() ) |
|
_sdv.create(cn, 1, CV_64F, -1, true); |
|
stddev = _sdv.getMat(); |
|
dcn_stddev = (int)stddev.total(); |
|
pstddev = stddev.ptr<Ipp64f>(); |
|
} |
|
for( int c = cn; c < dcn_mean; c++ ) |
|
pmean[c] = 0; |
|
for( int c = cn; c < dcn_stddev; c++ ) |
|
pstddev[c] = 0; |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
if( !mask.empty() ) |
|
{ |
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *, Ipp64f *); |
|
ippiMaskMeanStdDevFuncC1 ippiMean_StdDev_C1MR = |
|
type == CV_8UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_32f_C1MR : |
|
0; |
|
if( ippiMean_StdDev_C1MR ) |
|
{ |
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, pmean, pstddev) >= 0 ) |
|
{ |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *, Ipp64f *); |
|
ippiMaskMeanStdDevFuncC3 ippiMean_StdDev_C3CMR = |
|
type == CV_8UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CMR : |
|
0; |
|
if( ippiMean_StdDev_C3CMR ) |
|
{ |
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 ) |
|
{ |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC1)(const void *, int, IppiSize, Ipp64f *, Ipp64f *); |
|
ippiMeanStdDevFuncC1 ippiMean_StdDev_C1R = |
|
type == CV_8UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_8u_C1R : |
|
type == CV_16UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_16u_C1R : |
|
#if (IPP_VERSION_X100 >= 810) |
|
type == CV_32FC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_32f_C1R ://Aug 2013: bug in IPP 7.1, 8.0 |
|
#endif |
|
0; |
|
if( ippiMean_StdDev_C1R ) |
|
{ |
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1R, src.ptr(), (int)src.step[0], sz, pmean, pstddev) >= 0 ) |
|
{ |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC3)(const void *, int, IppiSize, int, Ipp64f *, Ipp64f *); |
|
ippiMeanStdDevFuncC3 ippiMean_StdDev_C3CR = |
|
type == CV_8UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CR : |
|
type == CV_16UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CR : |
|
type == CV_32FC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CR : |
|
0; |
|
if( ippiMean_StdDev_C3CR ) |
|
{ |
|
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 ) |
|
{ |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(_mean); CV_UNUSED(_sdv); CV_UNUSED(mask); |
|
#endif |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_meanStdDev(_src, _mean, _sdv, _mask)) |
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_Assert( mask.empty() || mask.type() == CV_8UC1 ); |
|
|
|
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_MEAN_STDDEV>(src.cols, src.rows), |
|
openvx_meanStdDev(src, _mean, _sdv, mask)) |
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_meanStdDev(src, _mean, _sdv, mask)); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
|
|
SumSqrFunc func = getSumSqrTab(depth); |
|
|
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0, nz0 = 0; |
|
AutoBuffer<double> _buf(cn*4); |
|
double *s = (double*)_buf, *sq = s + cn; |
|
int *sbuf = (int*)s, *sqbuf = (int*)sq; |
|
bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S; |
|
size_t esz = 0; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
s[k] = sq[k] = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = 1 << 15; |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
sbuf = (int*)(sq + cn); |
|
if( blockSqSum ) |
|
sqbuf = sbuf + cn; |
|
for( k = 0; k < cn; k++ ) |
|
sbuf[k] = sqbuf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn ); |
|
count += nz; |
|
nz0 += nz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += sbuf[k]; |
|
sbuf[k] = 0; |
|
} |
|
if( blockSqSum ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
sq[k] += sqbuf[k]; |
|
sqbuf[k] = 0; |
|
} |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
|
|
double scale = nz0 ? 1./nz0 : 0.; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] *= scale; |
|
sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.)); |
|
} |
|
|
|
for( j = 0; j < 2; j++ ) |
|
{ |
|
const double* sptr = j == 0 ? s : sq; |
|
_OutputArray _dst = j == 0 ? _mean : _sdv; |
|
if( !_dst.needed() ) |
|
continue; |
|
|
|
if( !_dst.fixedSize() ) |
|
_dst.create(cn, 1, CV_64F, -1, true); |
|
Mat dst = _dst.getMat(); |
|
int dcn = (int)dst.total(); |
|
CV_Assert( dst.type() == CV_64F && dst.isContinuous() && |
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn ); |
|
double* dptr = dst.ptr<double>(); |
|
for( k = 0; k < cn; k++ ) |
|
dptr[k] = sptr[k]; |
|
for( ; k < dcn; k++ ) |
|
dptr[k] = 0; |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* minMaxLoc * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename WT> static void |
|
minMaxIdx_( const T* src, const uchar* mask, WT* _minVal, WT* _maxVal, |
|
size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx ) |
|
{ |
|
WT minVal = *_minVal, maxVal = *_maxVal; |
|
size_t minIdx = *_minIdx, maxIdx = *_maxIdx; |
|
|
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < len; i++ ) |
|
{ |
|
T val = src[i]; |
|
if( val < minVal ) |
|
{ |
|
minVal = val; |
|
minIdx = startIdx + i; |
|
} |
|
if( val > maxVal ) |
|
{ |
|
maxVal = val; |
|
maxIdx = startIdx + i; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++ ) |
|
{ |
|
T val = src[i]; |
|
if( mask[i] && val < minVal ) |
|
{ |
|
minVal = val; |
|
minIdx = startIdx + i; |
|
} |
|
if( mask[i] && val > maxVal ) |
|
{ |
|
maxVal = val; |
|
maxIdx = startIdx + i; |
|
} |
|
} |
|
} |
|
|
|
*_minIdx = minIdx; |
|
*_maxIdx = maxIdx; |
|
*_minVal = minVal; |
|
*_maxVal = maxVal; |
|
} |
|
|
|
static void minMaxIdx_8u(const uchar* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_8s(const schar* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_16u(const ushort* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_16s(const short* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_32s(const int* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, float* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t); |
|
|
|
static MinMaxIdxFunc getMinmaxTab(int depth) |
|
{ |
|
static MinMaxIdxFunc minmaxTab[] = |
|
{ |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s), |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s), |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s), |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f), |
|
0 |
|
}; |
|
|
|
return minmaxTab[depth]; |
|
} |
|
|
|
static void ofs2idx(const Mat& a, size_t ofs, int* idx) |
|
{ |
|
int i, d = a.dims; |
|
if( ofs > 0 ) |
|
{ |
|
ofs--; |
|
for( i = d-1; i >= 0; i-- ) |
|
{ |
|
int sz = a.size[i]; |
|
idx[i] = (int)(ofs % sz); |
|
ofs /= sz; |
|
} |
|
} |
|
else |
|
{ |
|
for( i = d-1; i >= 0; i-- ) |
|
idx[i] = -1; |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
#define MINMAX_STRUCT_ALIGNMENT 8 // sizeof double |
|
|
|
template <typename T> |
|
void getMinMaxRes(const Mat & db, double * minVal, double * maxVal, |
|
int* minLoc, int* maxLoc, |
|
int groupnum, int cols, double * maxVal2) |
|
{ |
|
uint index_max = std::numeric_limits<uint>::max(); |
|
T minval = std::numeric_limits<T>::max(); |
|
T maxval = std::numeric_limits<T>::min() > 0 ? -std::numeric_limits<T>::max() : std::numeric_limits<T>::min(), maxval2 = maxval; |
|
uint minloc = index_max, maxloc = index_max; |
|
|
|
size_t index = 0; |
|
const T * minptr = NULL, * maxptr = NULL, * maxptr2 = NULL; |
|
const uint * minlocptr = NULL, * maxlocptr = NULL; |
|
if (minVal || minLoc) |
|
{ |
|
minptr = db.ptr<T>(); |
|
index += sizeof(T) * groupnum; |
|
index = alignSize(index, MINMAX_STRUCT_ALIGNMENT); |
|
} |
|
if (maxVal || maxLoc) |
|
{ |
|
maxptr = (const T *)(db.ptr() + index); |
|
index += sizeof(T) * groupnum; |
|
index = alignSize(index, MINMAX_STRUCT_ALIGNMENT); |
|
} |
|
if (minLoc) |
|
{ |
|
minlocptr = (const uint *)(db.ptr() + index); |
|
index += sizeof(uint) * groupnum; |
|
index = alignSize(index, MINMAX_STRUCT_ALIGNMENT); |
|
} |
|
if (maxLoc) |
|
{ |
|
maxlocptr = (const uint *)(db.ptr() + index); |
|
index += sizeof(uint) * groupnum; |
|
index = alignSize(index, MINMAX_STRUCT_ALIGNMENT); |
|
} |
|
if (maxVal2) |
|
maxptr2 = (const T *)(db.ptr() + index); |
|
|
|
for (int i = 0; i < groupnum; i++) |
|
{ |
|
if (minptr && minptr[i] <= minval) |
|
{ |
|
if (minptr[i] == minval) |
|
{ |
|
if (minlocptr) |
|
minloc = std::min(minlocptr[i], minloc); |
|
} |
|
else |
|
{ |
|
if (minlocptr) |
|
minloc = minlocptr[i]; |
|
minval = minptr[i]; |
|
} |
|
} |
|
if (maxptr && maxptr[i] >= maxval) |
|
{ |
|
if (maxptr[i] == maxval) |
|
{ |
|
if (maxlocptr) |
|
maxloc = std::min(maxlocptr[i], maxloc); |
|
} |
|
else |
|
{ |
|
if (maxlocptr) |
|
maxloc = maxlocptr[i]; |
|
maxval = maxptr[i]; |
|
} |
|
} |
|
if (maxptr2 && maxptr2[i] > maxval2) |
|
maxval2 = maxptr2[i]; |
|
} |
|
bool zero_mask = (minLoc && minloc == index_max) || |
|
(maxLoc && maxloc == index_max); |
|
|
|
if (minVal) |
|
*minVal = zero_mask ? 0 : (double)minval; |
|
if (maxVal) |
|
*maxVal = zero_mask ? 0 : (double)maxval; |
|
if (maxVal2) |
|
*maxVal2 = zero_mask ? 0 : (double)maxval2; |
|
|
|
if (minLoc) |
|
{ |
|
minLoc[0] = zero_mask ? -1 : minloc / cols; |
|
minLoc[1] = zero_mask ? -1 : minloc % cols; |
|
} |
|
if (maxLoc) |
|
{ |
|
maxLoc[0] = zero_mask ? -1 : maxloc / cols; |
|
maxLoc[1] = zero_mask ? -1 : maxloc % cols; |
|
} |
|
} |
|
|
|
typedef void (*getMinMaxResFunc)(const Mat & db, double * minVal, double * maxVal, |
|
int * minLoc, int *maxLoc, int gropunum, int cols, double * maxVal2); |
|
|
|
static bool ocl_minMaxIdx( InputArray _src, double* minVal, double* maxVal, int* minLoc, int* maxLoc, InputArray _mask, |
|
int ddepth = -1, bool absValues = false, InputArray _src2 = noArray(), double * maxVal2 = NULL) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
|
|
#ifdef __ANDROID__ |
|
if (dev.isNVidia()) |
|
return false; |
|
#endif |
|
|
|
bool doubleSupport = dev.doubleFPConfig() > 0, haveMask = !_mask.empty(), |
|
haveSrc2 = _src2.kind() != _InputArray::NONE; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
kercn = haveMask ? cn : std::min(4, ocl::predictOptimalVectorWidth(_src, _src2)); |
|
|
|
// disabled following modes since it occasionally fails on AMD devices (e.g. A10-6800K, sep. 2014) |
|
if ((haveMask || type == CV_32FC1) && dev.isAMD()) |
|
return false; |
|
|
|
CV_Assert( (cn == 1 && (!haveMask || _mask.type() == CV_8U)) || |
|
(cn >= 1 && !minLoc && !maxLoc) ); |
|
|
|
if (ddepth < 0) |
|
ddepth = depth; |
|
|
|
CV_Assert(!haveSrc2 || _src2.type() == type); |
|
|
|
if (depth == CV_32S) |
|
return false; |
|
|
|
if ((depth == CV_64F || ddepth == CV_64F) && !doubleSupport) |
|
return false; |
|
|
|
int groupnum = dev.maxComputeUnits(); |
|
size_t wgs = dev.maxWorkGroupSize(); |
|
|
|
int wgs2_aligned = 1; |
|
while (wgs2_aligned < (int)wgs) |
|
wgs2_aligned <<= 1; |
|
wgs2_aligned >>= 1; |
|
|
|
bool needMinVal = minVal || minLoc, needMinLoc = minLoc != NULL, |
|
needMaxVal = maxVal || maxLoc, needMaxLoc = maxLoc != NULL; |
|
|
|
// in case of mask we must know whether mask is filled with zeros or not |
|
// so let's calculate min or max location, if it's undefined, so mask is zeros |
|
if (!(needMaxLoc || needMinLoc) && haveMask) |
|
{ |
|
if (needMinVal) |
|
needMinLoc = true; |
|
else |
|
needMaxLoc = true; |
|
} |
|
|
|
char cvt[2][40]; |
|
String opts = format("-D DEPTH_%d -D srcT1=%s%s -D WGS=%d -D srcT=%s" |
|
" -D WGS2_ALIGNED=%d%s%s%s -D kercn=%d%s%s%s%s" |
|
" -D dstT1=%s -D dstT=%s -D convertToDT=%s%s%s%s%s -D wdepth=%d -D convertFromU=%s" |
|
" -D MINMAX_STRUCT_ALIGNMENT=%d", |
|
depth, ocl::typeToStr(depth), haveMask ? " -D HAVE_MASK" : "", (int)wgs, |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), wgs2_aligned, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "", |
|
_mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn, |
|
needMinVal ? " -D NEED_MINVAL" : "", needMaxVal ? " -D NEED_MAXVAL" : "", |
|
needMinLoc ? " -D NEED_MINLOC" : "", needMaxLoc ? " -D NEED_MAXLOC" : "", |
|
ocl::typeToStr(ddepth), ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)), |
|
ocl::convertTypeStr(depth, ddepth, kercn, cvt[0]), |
|
absValues ? " -D OP_ABS" : "", |
|
haveSrc2 ? " -D HAVE_SRC2" : "", maxVal2 ? " -D OP_CALC2" : "", |
|
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "", ddepth, |
|
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, kercn, cvt[1]) : "noconvert", |
|
MINMAX_STRUCT_ALIGNMENT); |
|
|
|
ocl::Kernel k("minmaxloc", ocl::core::minmaxloc_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
int esz = CV_ELEM_SIZE(ddepth), esz32s = CV_ELEM_SIZE1(CV_32S), |
|
dbsize = groupnum * ((needMinVal ? esz : 0) + (needMaxVal ? esz : 0) + |
|
(needMinLoc ? esz32s : 0) + (needMaxLoc ? esz32s : 0) + |
|
(maxVal2 ? esz : 0)) |
|
+ 5 * MINMAX_STRUCT_ALIGNMENT; |
|
UMat src = _src.getUMat(), src2 = _src2.getUMat(), db(1, dbsize, CV_8UC1), mask = _mask.getUMat(); |
|
|
|
if (cn > 1 && !haveMask) |
|
{ |
|
src = src.reshape(1); |
|
src2 = src2.reshape(1); |
|
} |
|
|
|
if (haveSrc2) |
|
{ |
|
if (!haveMask) |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(), |
|
groupnum, ocl::KernelArg::PtrWriteOnly(db), ocl::KernelArg::ReadOnlyNoSize(src2)); |
|
else |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(), |
|
groupnum, ocl::KernelArg::PtrWriteOnly(db), ocl::KernelArg::ReadOnlyNoSize(mask), |
|
ocl::KernelArg::ReadOnlyNoSize(src2)); |
|
} |
|
else |
|
{ |
|
if (!haveMask) |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(), |
|
groupnum, ocl::KernelArg::PtrWriteOnly(db)); |
|
else |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(), |
|
groupnum, ocl::KernelArg::PtrWriteOnly(db), ocl::KernelArg::ReadOnlyNoSize(mask)); |
|
} |
|
|
|
size_t globalsize = groupnum * wgs; |
|
if (!k.run(1, &globalsize, &wgs, true)) |
|
return false; |
|
|
|
static const getMinMaxResFunc functab[7] = |
|
{ |
|
getMinMaxRes<uchar>, |
|
getMinMaxRes<char>, |
|
getMinMaxRes<ushort>, |
|
getMinMaxRes<short>, |
|
getMinMaxRes<int>, |
|
getMinMaxRes<float>, |
|
getMinMaxRes<double> |
|
}; |
|
|
|
getMinMaxResFunc func = functab[ddepth]; |
|
|
|
int locTemp[2]; |
|
func(db.getMat(ACCESS_READ), minVal, maxVal, |
|
needMinLoc ? minLoc ? minLoc : locTemp : minLoc, |
|
needMaxLoc ? maxLoc ? maxLoc : locTemp : maxLoc, |
|
groupnum, src.cols, maxVal2); |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_OPENVX |
|
namespace ovx { |
|
template <> inline bool skipSmallImages<VX_KERNEL_MINMAXLOC>(int w, int h) { return w*h < 3840 * 2160; } |
|
} |
|
static bool openvx_minMaxIdx(Mat &src, double* minVal, double* maxVal, int* minIdx, int* maxIdx, Mat &mask) |
|
{ |
|
int stype = src.type(); |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size / rows) : 0; |
|
if ((stype != CV_8UC1 && stype != CV_16SC1) || !mask.empty() || |
|
(src.dims != 2 && !(src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size)) |
|
) |
|
return false; |
|
|
|
try |
|
{ |
|
ivx::Context ctx = ovx::getOpenVXContext(); |
|
ivx::Image |
|
ia = ivx::Image::createFromHandle(ctx, stype == CV_8UC1 ? VX_DF_IMAGE_U8 : VX_DF_IMAGE_S16, |
|
ivx::Image::createAddressing(cols, rows, stype == CV_8UC1 ? 1 : 2, (vx_int32)(src.step[0])), src.ptr()); |
|
|
|
ivx::Scalar vxMinVal = ivx::Scalar::create(ctx, stype == CV_8UC1 ? VX_TYPE_UINT8 : VX_TYPE_INT16, 0); |
|
ivx::Scalar vxMaxVal = ivx::Scalar::create(ctx, stype == CV_8UC1 ? VX_TYPE_UINT8 : VX_TYPE_INT16, 0); |
|
ivx::Array vxMinInd, vxMaxInd; |
|
ivx::Scalar vxMinCount, vxMaxCount; |
|
if (minIdx) |
|
{ |
|
vxMinInd = ivx::Array::create(ctx, VX_TYPE_COORDINATES2D, 1); |
|
vxMinCount = ivx::Scalar::create(ctx, VX_TYPE_UINT32, 0); |
|
} |
|
if (maxIdx) |
|
{ |
|
vxMaxInd = ivx::Array::create(ctx, VX_TYPE_COORDINATES2D, 1); |
|
vxMaxCount = ivx::Scalar::create(ctx, VX_TYPE_UINT32, 0); |
|
} |
|
|
|
ivx::IVX_CHECK_STATUS(vxuMinMaxLoc(ctx, ia, vxMinVal, vxMaxVal, vxMinInd, vxMaxInd, vxMinCount, vxMaxCount)); |
|
|
|
if (minVal) |
|
{ |
|
*minVal = stype == CV_8UC1 ? vxMinVal.getValue<vx_uint8>() : vxMinVal.getValue<vx_int16>(); |
|
} |
|
if (maxVal) |
|
{ |
|
*maxVal = stype == CV_8UC1 ? vxMaxVal.getValue<vx_uint8>() : vxMaxVal.getValue<vx_int16>(); |
|
} |
|
if (minIdx) |
|
{ |
|
if(vxMinCount.getValue<vx_uint32>()<1) throw ivx::RuntimeError(VX_ERROR_INVALID_VALUE, std::string(__func__) + "(): minimum value location not found"); |
|
vx_coordinates2d_t loc; |
|
vxMinInd.copyRangeTo(0, 1, &loc); |
|
size_t minidx = loc.y * cols + loc.x + 1; |
|
ofs2idx(src, minidx, minIdx); |
|
} |
|
if (maxIdx) |
|
{ |
|
if (vxMaxCount.getValue<vx_uint32>()<1) throw ivx::RuntimeError(VX_ERROR_INVALID_VALUE, std::string(__func__) + "(): maximum value location not found"); |
|
vx_coordinates2d_t loc; |
|
vxMaxInd.copyRangeTo(0, 1, &loc); |
|
size_t maxidx = loc.y * cols + loc.x + 1; |
|
ofs2idx(src, maxidx, maxIdx); |
|
} |
|
} |
|
catch (ivx::RuntimeError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch (ivx::WrapperError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static IppStatus ipp_minMaxIndex_wrap(const void* pSrc, int srcStep, IppiSize size, IppDataType dataType, |
|
float* pMinVal, float* pMaxVal, IppiPoint* pMinIndex, IppiPoint* pMaxIndex, const Ipp8u*, int) |
|
{ |
|
switch(dataType) |
|
{ |
|
case ipp8u: return CV_INSTRUMENT_FUN_IPP(ippiMinMaxIndx_8u_C1R, (const Ipp8u*)pSrc, srcStep, size, pMinVal, pMaxVal, pMinIndex, pMaxIndex); |
|
case ipp16u: return CV_INSTRUMENT_FUN_IPP(ippiMinMaxIndx_16u_C1R, (const Ipp16u*)pSrc, srcStep, size, pMinVal, pMaxVal, pMinIndex, pMaxIndex); |
|
case ipp32f: return CV_INSTRUMENT_FUN_IPP(ippiMinMaxIndx_32f_C1R, (const Ipp32f*)pSrc, srcStep, size, pMinVal, pMaxVal, pMinIndex, pMaxIndex); |
|
default: return ippStsDataTypeErr; |
|
} |
|
} |
|
|
|
static IppStatus ipp_minMaxIndexMask_wrap(const void* pSrc, int srcStep, IppiSize size, IppDataType dataType, |
|
float* pMinVal, float* pMaxVal, IppiPoint* pMinIndex, IppiPoint* pMaxIndex, const Ipp8u* pMask, int maskStep) |
|
{ |
|
switch(dataType) |
|
{ |
|
case ipp8u: return CV_INSTRUMENT_FUN_IPP(ippiMinMaxIndx_8u_C1MR, (const Ipp8u*)pSrc, srcStep, pMask, maskStep, size, pMinVal, pMaxVal, pMinIndex, pMaxIndex); |
|
case ipp16u: return CV_INSTRUMENT_FUN_IPP(ippiMinMaxIndx_16u_C1MR, (const Ipp16u*)pSrc, srcStep, pMask, maskStep, size, pMinVal, pMaxVal, pMinIndex, pMaxIndex); |
|
case ipp32f: return CV_INSTRUMENT_FUN_IPP(ippiMinMaxIndx_32f_C1MR, (const Ipp32f*)pSrc, srcStep, pMask, maskStep, size, pMinVal, pMaxVal, pMinIndex, pMaxIndex); |
|
default: return ippStsDataTypeErr; |
|
} |
|
} |
|
|
|
static IppStatus ipp_minMax_wrap(const void* pSrc, int srcStep, IppiSize size, IppDataType dataType, |
|
float* pMinVal, float* pMaxVal, IppiPoint*, IppiPoint*, const Ipp8u*, int) |
|
{ |
|
IppStatus status; |
|
|
|
switch(dataType) |
|
{ |
|
#if IPP_VERSION_X100 > 201701 // wrong min values |
|
case ipp8u: |
|
{ |
|
Ipp8u val[2]; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMinMax_8u_C1R, (const Ipp8u*)pSrc, srcStep, size, &val[0], &val[1]); |
|
*pMinVal = val[0]; |
|
*pMaxVal = val[1]; |
|
return status; |
|
} |
|
#endif |
|
case ipp16u: |
|
{ |
|
Ipp16u val[2]; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMinMax_16u_C1R, (const Ipp16u*)pSrc, srcStep, size, &val[0], &val[1]); |
|
*pMinVal = val[0]; |
|
*pMaxVal = val[1]; |
|
return status; |
|
} |
|
case ipp16s: |
|
{ |
|
Ipp16s val[2]; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMinMax_16s_C1R, (const Ipp16s*)pSrc, srcStep, size, &val[0], &val[1]); |
|
*pMinVal = val[0]; |
|
*pMaxVal = val[1]; |
|
return status; |
|
} |
|
case ipp32f: return CV_INSTRUMENT_FUN_IPP(ippiMinMax_32f_C1R, (const Ipp32f*)pSrc, srcStep, size, pMinVal, pMaxVal); |
|
default: return ipp_minMaxIndex_wrap(pSrc, srcStep, size, dataType, pMinVal, pMaxVal, NULL, NULL, NULL, 0); |
|
} |
|
} |
|
|
|
static IppStatus ipp_minIdx_wrap(const void* pSrc, int srcStep, IppiSize size, IppDataType dataType, |
|
float* pMinVal, float*, IppiPoint* pMinIndex, IppiPoint*, const Ipp8u*, int) |
|
{ |
|
IppStatus status; |
|
|
|
switch(dataType) |
|
{ |
|
case ipp8u: |
|
{ |
|
Ipp8u val; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMinIndx_8u_C1R, (const Ipp8u*)pSrc, srcStep, size, &val, &pMinIndex->x, &pMinIndex->y); |
|
*pMinVal = val; |
|
return status; |
|
} |
|
case ipp16u: |
|
{ |
|
Ipp16u val; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMinIndx_16u_C1R, (const Ipp16u*)pSrc, srcStep, size, &val, &pMinIndex->x, &pMinIndex->y); |
|
*pMinVal = val; |
|
return status; |
|
} |
|
case ipp16s: |
|
{ |
|
Ipp16s val; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMinIndx_16s_C1R, (const Ipp16s*)pSrc, srcStep, size, &val, &pMinIndex->x, &pMinIndex->y); |
|
*pMinVal = val; |
|
return status; |
|
} |
|
case ipp32f: return CV_INSTRUMENT_FUN_IPP(ippiMinIndx_32f_C1R, (const Ipp32f*)pSrc, srcStep, size, pMinVal, &pMinIndex->x, &pMinIndex->y); |
|
default: return ipp_minMaxIndex_wrap(pSrc, srcStep, size, dataType, pMinVal, NULL, pMinIndex, NULL, NULL, 0); |
|
} |
|
} |
|
|
|
static IppStatus ipp_maxIdx_wrap(const void* pSrc, int srcStep, IppiSize size, IppDataType dataType, |
|
float*, float* pMaxVal, IppiPoint*, IppiPoint* pMaxIndex, const Ipp8u*, int) |
|
{ |
|
IppStatus status; |
|
|
|
switch(dataType) |
|
{ |
|
case ipp8u: |
|
{ |
|
Ipp8u val; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMaxIndx_8u_C1R, (const Ipp8u*)pSrc, srcStep, size, &val, &pMaxIndex->x, &pMaxIndex->y); |
|
*pMaxVal = val; |
|
return status; |
|
} |
|
case ipp16u: |
|
{ |
|
Ipp16u val; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMaxIndx_16u_C1R, (const Ipp16u*)pSrc, srcStep, size, &val, &pMaxIndex->x, &pMaxIndex->y); |
|
*pMaxVal = val; |
|
return status; |
|
} |
|
case ipp16s: |
|
{ |
|
Ipp16s val; |
|
status = CV_INSTRUMENT_FUN_IPP(ippiMaxIndx_16s_C1R, (const Ipp16s*)pSrc, srcStep, size, &val, &pMaxIndex->x, &pMaxIndex->y); |
|
*pMaxVal = val; |
|
return status; |
|
} |
|
case ipp32f: return CV_INSTRUMENT_FUN_IPP(ippiMaxIndx_32f_C1R, (const Ipp32f*)pSrc, srcStep, size, pMaxVal, &pMaxIndex->x, &pMaxIndex->y); |
|
default: return ipp_minMaxIndex_wrap(pSrc, srcStep, size, dataType, NULL, pMaxVal, NULL, pMaxIndex, NULL, 0); |
|
} |
|
} |
|
|
|
typedef IppStatus (*IppMinMaxSelector)(const void* pSrc, int srcStep, IppiSize size, IppDataType dataType, |
|
float* pMinVal, float* pMaxVal, IppiPoint* pMinIndex, IppiPoint* pMaxIndex, const Ipp8u* pMask, int maskStep); |
|
|
|
static bool ipp_minMaxIdx(Mat &src, double* _minVal, double* _maxVal, int* _minIdx, int* _maxIdx, Mat &mask) |
|
{ |
|
#if IPP_VERSION_X100 >= 700 |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 < 201800 |
|
// cv::minMaxIdx problem with NaN input |
|
// Disable 32F processing only |
|
if(src.depth() == CV_32F && cv::ipp::getIppTopFeatures() == ippCPUID_SSE42) |
|
return false; |
|
#endif |
|
|
|
#if IPP_VERSION_X100 < 201801 |
|
// cv::minMaxIdx problem with index positions on AVX |
|
if(!mask.empty() && _maxIdx && cv::ipp::getIppTopFeatures() != ippCPUID_SSE42) |
|
return false; |
|
#endif |
|
|
|
IppStatus status; |
|
IppDataType dataType = ippiGetDataType(src.depth()); |
|
float minVal = 0; |
|
float maxVal = 0; |
|
IppiPoint minIdx = {-1, -1}; |
|
IppiPoint maxIdx = {-1, -1}; |
|
|
|
float *pMinVal = (_minVal || _minIdx)?&minVal:NULL; |
|
float *pMaxVal = (_maxVal || _maxIdx)?&maxVal:NULL; |
|
IppiPoint *pMinIdx = (_minIdx)?&minIdx:NULL; |
|
IppiPoint *pMaxIdx = (_maxIdx)?&maxIdx:NULL; |
|
|
|
IppMinMaxSelector ippMinMaxFun = ipp_minMaxIndexMask_wrap; |
|
if(mask.empty()) |
|
{ |
|
if(_maxVal && _maxIdx && !_minVal && !_minIdx) |
|
ippMinMaxFun = ipp_maxIdx_wrap; |
|
else if(!_maxVal && !_maxIdx && _minVal && _minIdx) |
|
ippMinMaxFun = ipp_minIdx_wrap; |
|
else if(_maxVal && !_maxIdx && _minVal && !_minIdx) |
|
ippMinMaxFun = ipp_minMax_wrap; |
|
else if(!_maxVal && !_maxIdx && !_minVal && !_minIdx) |
|
return false; |
|
else |
|
ippMinMaxFun = ipp_minMaxIndex_wrap; |
|
} |
|
|
|
if(src.dims <= 2) |
|
{ |
|
IppiSize size = ippiSize(src.size()); |
|
size.width *= src.channels(); |
|
|
|
status = ippMinMaxFun(src.ptr(), (int)src.step, size, dataType, pMinVal, pMaxVal, pMinIdx, pMaxIdx, (Ipp8u*)mask.ptr(), (int)mask.step); |
|
if(status < 0) |
|
return false; |
|
if(_minVal) |
|
*_minVal = minVal; |
|
if(_maxVal) |
|
*_maxVal = maxVal; |
|
if(_minIdx) |
|
{ |
|
#if IPP_VERSION_X100 < 201801 |
|
// Should be just ippStsNoOperation check, but there is a bug in the function so we need additional checks |
|
if(status == ippStsNoOperation && !mask.empty() && !pMinIdx->x && !pMinIdx->y) |
|
#else |
|
if(status == ippStsNoOperation) |
|
#endif |
|
{ |
|
_minIdx[0] = -1; |
|
_minIdx[1] = -1; |
|
} |
|
else |
|
{ |
|
_minIdx[0] = minIdx.y; |
|
_minIdx[1] = minIdx.x; |
|
} |
|
} |
|
if(_maxIdx) |
|
{ |
|
#if IPP_VERSION_X100 < 201801 |
|
// Should be just ippStsNoOperation check, but there is a bug in the function so we need additional checks |
|
if(status == ippStsNoOperation && !mask.empty() && !pMaxIdx->x && !pMaxIdx->y) |
|
#else |
|
if(status == ippStsNoOperation) |
|
#endif |
|
{ |
|
_maxIdx[0] = -1; |
|
_maxIdx[1] = -1; |
|
} |
|
else |
|
{ |
|
_maxIdx[0] = maxIdx.y; |
|
_maxIdx[1] = maxIdx.x; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
const Mat *arrays[] = {&src, mask.empty()?NULL:&mask, NULL}; |
|
uchar *ptrs[3] = {NULL}; |
|
NAryMatIterator it(arrays, ptrs); |
|
IppiSize size = ippiSize(it.size*src.channels(), 1); |
|
int srcStep = (int)(size.width*src.elemSize1()); |
|
int maskStep = size.width; |
|
size_t idxPos = 1; |
|
size_t minIdxAll = 0; |
|
size_t maxIdxAll = 0; |
|
float minValAll = IPP_MAXABS_32F; |
|
float maxValAll = -IPP_MAXABS_32F; |
|
|
|
for(size_t i = 0; i < it.nplanes; i++, ++it, idxPos += size.width) |
|
{ |
|
status = ippMinMaxFun(ptrs[0], srcStep, size, dataType, pMinVal, pMaxVal, pMinIdx, pMaxIdx, ptrs[1], maskStep); |
|
if(status < 0) |
|
return false; |
|
#if IPP_VERSION_X100 > 201701 |
|
// Zero-mask check, function should return ippStsNoOperation warning |
|
if(status == ippStsNoOperation) |
|
continue; |
|
#else |
|
// Crude zero-mask check, waiting for fix in IPP function |
|
if(ptrs[1]) |
|
{ |
|
Mat localMask(Size(size.width, 1), CV_8U, ptrs[1], maskStep); |
|
if(!cv::countNonZero(localMask)) |
|
continue; |
|
} |
|
#endif |
|
|
|
if(_minVal && minVal < minValAll) |
|
{ |
|
minValAll = minVal; |
|
minIdxAll = idxPos+minIdx.x; |
|
} |
|
if(_maxVal && maxVal > maxValAll) |
|
{ |
|
maxValAll = maxVal; |
|
maxIdxAll = idxPos+maxIdx.x; |
|
} |
|
} |
|
if(!src.empty() && mask.empty()) |
|
{ |
|
if(minIdxAll == 0) |
|
minIdxAll = 1; |
|
if(maxValAll == 0) |
|
maxValAll = 1; |
|
} |
|
|
|
if(_minVal) |
|
*_minVal = minValAll; |
|
if(_maxVal) |
|
*_maxVal = maxValAll; |
|
if(_minIdx) |
|
ofs2idx(src, minIdxAll, _minIdx); |
|
if(_maxIdx) |
|
ofs2idx(src, maxIdxAll, _maxIdx); |
|
} |
|
|
|
return true; |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(minVal); CV_UNUSED(maxVal); CV_UNUSED(minIdx); CV_UNUSED(maxIdx); CV_UNUSED(mask); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
|
|
} |
|
|
|
void cv::minMaxIdx(InputArray _src, double* minVal, |
|
double* maxVal, int* minIdx, int* maxIdx, |
|
InputArray _mask) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
CV_Assert( (cn == 1 && (_mask.empty() || _mask.type() == CV_8U)) || |
|
(cn > 1 && _mask.empty() && !minIdx && !maxIdx) ); |
|
|
|
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2 && (_mask.empty() || _src.size() == _mask.size()), |
|
ocl_minMaxIdx(_src, minVal, maxVal, minIdx, maxIdx, _mask)) |
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
|
|
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_MINMAXLOC>(src.cols, src.rows), |
|
openvx_minMaxIdx(src, minVal, maxVal, minIdx, maxIdx, mask)) |
|
|
|
CV_IPP_RUN_FAST(ipp_minMaxIdx(src, minVal, maxVal, minIdx, maxIdx, mask)) |
|
|
|
MinMaxIdxFunc func = getMinmaxTab(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
|
|
size_t minidx = 0, maxidx = 0; |
|
int iminval = INT_MAX, imaxval = INT_MIN; |
|
float fminval = std::numeric_limits<float>::infinity(), fmaxval = -fminval; |
|
double dminval = std::numeric_limits<double>::infinity(), dmaxval = -dminval; |
|
size_t startidx = 1; |
|
int *minval = &iminval, *maxval = &imaxval; |
|
int planeSize = (int)it.size*cn; |
|
|
|
if( depth == CV_32F ) |
|
minval = (int*)&fminval, maxval = (int*)&fmaxval; |
|
else if( depth == CV_64F ) |
|
minval = (int*)&dminval, maxval = (int*)&dmaxval; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it, startidx += planeSize ) |
|
func( ptrs[0], ptrs[1], minval, maxval, &minidx, &maxidx, planeSize, startidx ); |
|
|
|
if (!src.empty() && mask.empty()) |
|
{ |
|
if( minidx == 0 ) |
|
minidx = 1; |
|
if( maxidx == 0 ) |
|
maxidx = 1; |
|
} |
|
|
|
if( minidx == 0 ) |
|
dminval = dmaxval = 0; |
|
else if( depth == CV_32F ) |
|
dminval = fminval, dmaxval = fmaxval; |
|
else if( depth <= CV_32S ) |
|
dminval = iminval, dmaxval = imaxval; |
|
|
|
if( minVal ) |
|
*minVal = dminval; |
|
if( maxVal ) |
|
*maxVal = dmaxval; |
|
|
|
if( minIdx ) |
|
ofs2idx(src, minidx, minIdx); |
|
if( maxIdx ) |
|
ofs2idx(src, maxidx, maxIdx); |
|
} |
|
|
|
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal, |
|
Point* minLoc, Point* maxLoc, InputArray mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert(_img.dims() <= 2); |
|
|
|
minMaxIdx(_img, minVal, maxVal, (int*)minLoc, (int*)maxLoc, mask); |
|
if( minLoc ) |
|
std::swap(minLoc->x, minLoc->y); |
|
if( maxLoc ) |
|
std::swap(maxLoc->x, maxLoc->y); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* norm * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename ST> int |
|
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, ST(cv_abs(src[k]))); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += cv_abs(src[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
T v = src[k]; |
|
result += (ST)v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src1, src2, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, (ST)std::abs(src1[k] - src2[k])); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += std::abs(src1[k] - src2[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
ST v = src1[k] - src2[k]; |
|
result += v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
Hamming::ResultType Hamming::operator()( const unsigned char* a, const unsigned char* b, int size ) const |
|
{ |
|
return cv::hal::normHamming(a, b, size); |
|
} |
|
|
|
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ |
|
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return norm##L##_(src, mask, r, len, cn); } \ |
|
static int normDiff##L##_##suffix(const type* src1, const type* src2, \ |
|
const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } |
|
|
|
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ |
|
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \ |
|
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \ |
|
CV_DEF_NORM_FUNC(L2, suffix, type, l2type) |
|
|
|
CV_DEF_NORM_ALL(8u, uchar, int, int, int) |
|
CV_DEF_NORM_ALL(8s, schar, int, int, int) |
|
CV_DEF_NORM_ALL(16u, ushort, int, int, double) |
|
CV_DEF_NORM_ALL(16s, short, int, int, double) |
|
CV_DEF_NORM_ALL(32s, int, int, double, double) |
|
CV_DEF_NORM_ALL(32f, float, float, double, double) |
|
CV_DEF_NORM_ALL(64f, double, double, double, double) |
|
|
|
|
|
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); |
|
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int); |
|
|
|
static NormFunc getNormFunc(int normType, int depth) |
|
{ |
|
static NormFunc normTab[3][8] = |
|
{ |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s), |
|
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s), |
|
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s), |
|
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0 |
|
} |
|
}; |
|
|
|
return normTab[normType][depth]; |
|
} |
|
|
|
static NormDiffFunc getNormDiffFunc(int normType, int depth) |
|
{ |
|
static NormDiffFunc normDiffTab[3][8] = |
|
{ |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s, |
|
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s, |
|
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f), |
|
(NormDiffFunc)normDiffInf_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s, |
|
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s, |
|
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f), |
|
(NormDiffFunc)normDiffL1_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s, |
|
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s, |
|
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f), |
|
(NormDiffFunc)normDiffL2_64f, 0 |
|
} |
|
}; |
|
|
|
return normDiffTab[normType][depth]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result ) |
|
{ |
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
|
|
#ifdef __ANDROID__ |
|
if (d.isNVidia()) |
|
return false; |
|
#endif |
|
const int cn = _src.channels(); |
|
if (cn > 4) |
|
return false; |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type); |
|
bool doubleSupport = d.doubleFPConfig() > 0, |
|
haveMask = _mask.kind() != _InputArray::NONE; |
|
|
|
if ( !(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) || |
|
(!doubleSupport && depth == CV_64F)) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
|
|
if (normType == NORM_INF) |
|
{ |
|
if (!ocl_minMaxIdx(_src, NULL, &result, NULL, NULL, _mask, |
|
std::max(depth, CV_32S), depth != CV_8U && depth != CV_16U)) |
|
return false; |
|
} |
|
else if (normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) |
|
{ |
|
Scalar sc; |
|
bool unstype = depth == CV_8U || depth == CV_16U; |
|
|
|
if ( !ocl_sum(haveMask ? src : src.reshape(1), sc, normType == NORM_L2 || normType == NORM_L2SQR ? |
|
OCL_OP_SUM_SQR : (unstype ? OCL_OP_SUM : OCL_OP_SUM_ABS), _mask) ) |
|
return false; |
|
|
|
double s = 0.0; |
|
for (int i = 0; i < (haveMask ? cn : 1); ++i) |
|
s += sc[i]; |
|
|
|
result = normType == NORM_L1 || normType == NORM_L2SQR ? s : std::sqrt(s); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_norm(Mat &src, int normType, Mat &mask, double &result) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
size_t total_size = src.total(); |
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
|
|
if( (src.dims == 2 || (src.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormFuncC1 ippiNorm_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNorm_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskNormFuncC3 ippiNorm_C3CMR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_32f_C3CMR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_32f_C3CMR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_32f_C3CMR : |
|
0) : 0; |
|
if( ippiNorm_C3CMR ) |
|
{ |
|
Ipp64f norm1, norm2, norm3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) |
|
{ |
|
Ipp64f norm = |
|
normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : |
|
normType == NORM_L1 ? norm1 + norm2 + norm3 : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : |
|
0; |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src.channels(), rows }; |
|
int type = src.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormFuncHint)(const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormFuncNoHint)(const void *, int, IppiSize, Ipp64f *); |
|
ippiNormFuncHint ippiNormHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormFuncNoHint ippiNorm = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16s_C1R : |
|
type == CV_32FC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_8u_C1R : |
|
type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16u_C1R : |
|
type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormHint || ippiNorm ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormHint ? CV_INSTRUMENT_FUN_IPP(ippiNormHint, src.ptr(), (int)src.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNorm, src.ptr(), (int)src.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(src); CV_UNUSED(normType); CV_UNUSED(mask); CV_UNUSED(result); |
|
#endif |
|
return false; |
|
} |
|
#endif |
|
} |
|
|
|
double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
normType &= NORM_TYPE_MASK; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || |
|
normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && _src.type() == CV_8U) ); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
double _result = 0; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
|
ocl_norm(_src, normType, _mask, _result), |
|
_result) |
|
#endif |
|
|
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(src, normType, mask, _result), _result); |
|
|
|
int depth = src.depth(), cn = src.channels(); |
|
if( src.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src.total()*cn; |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( depth == CV_32F ) |
|
{ |
|
const float* data = src.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
if( depth == CV_8U ) |
|
{ |
|
const uchar* data = src.ptr<uchar>(); |
|
|
|
if( normType == NORM_HAMMING ) |
|
{ |
|
return hal::normHamming(data, (int)len); |
|
} |
|
|
|
if( normType == NORM_HAMMING2 ) |
|
{ |
|
return hal::normHamming(data, (int)len, 2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_and(src, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
result += hal::normHamming(ptrs[0], total, cellSize); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
NormFunc func = getNormFunc(normType >> 1, depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
union |
|
{ |
|
double d; |
|
int i; |
|
float f; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); |
|
int isum = 0; |
|
int *ibuf = &result.i; |
|
size_t esz = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
ibuf = &isum; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
; |
|
else if( depth == CV_32F ) |
|
result.d = result.f; |
|
else |
|
result.d = result.i; |
|
} |
|
else if( normType == NORM_L2 ) |
|
result.d = std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask, double & result ) |
|
{ |
|
#ifdef __ANDROID__ |
|
if (ocl::Device::getDefault().isNVidia()) |
|
return false; |
|
#endif |
|
|
|
Scalar sc1, sc2; |
|
int cn = _src1.channels(); |
|
if (cn > 4) |
|
return false; |
|
int type = _src1.type(), depth = CV_MAT_DEPTH(type); |
|
bool relative = (normType & NORM_RELATIVE) != 0; |
|
normType &= ~NORM_RELATIVE; |
|
bool normsum = normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR; |
|
|
|
#ifdef __APPLE__ |
|
if(normType == NORM_L1 && type == CV_16UC3 && !_mask.empty()) |
|
return false; |
|
#endif |
|
|
|
if (normsum) |
|
{ |
|
if (!ocl_sum(_src1, sc1, normType == NORM_L2 || normType == NORM_L2SQR ? |
|
OCL_OP_SUM_SQR : OCL_OP_SUM, _mask, _src2, relative, sc2)) |
|
return false; |
|
} |
|
else |
|
{ |
|
if (!ocl_minMaxIdx(_src1, NULL, &sc1[0], NULL, NULL, _mask, std::max(CV_32S, depth), |
|
false, _src2, relative ? &sc2[0] : NULL)) |
|
return false; |
|
cn = 1; |
|
} |
|
|
|
double s2 = 0; |
|
for (int i = 0; i < cn; ++i) |
|
{ |
|
result += sc1[i]; |
|
if (relative) |
|
s2 += sc2[i]; |
|
} |
|
|
|
if (normType == NORM_L2) |
|
{ |
|
result = std::sqrt(result); |
|
if (relative) |
|
s2 = std::sqrt(s2); |
|
} |
|
|
|
if (relative) |
|
result /= (s2 + DBL_EPSILON); |
|
|
|
return true; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_IPP |
|
namespace cv |
|
{ |
|
static bool ipp_norm(InputArray _src1, InputArray _src2, int normType, InputArray _mask, double &result) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
#if IPP_VERSION_X100 >= 700 |
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
|
|
if( normType & CV_RELATIVE ) |
|
{ |
|
normType &= NORM_TYPE_MASK; |
|
|
|
size_t total_size = src1.total(); |
|
int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src1.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormDiffFuncC1 ippiNormRel_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNormRel_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormRel_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src1.channels(), rows }; |
|
int type = src1.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormRelFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormRelFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiNormRelFuncHint ippiNormRelHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormRelFuncNoHint ippiNormRel = |
|
normType == NORM_INF ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16s_C1R : |
|
type == CV_32F ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_8u_C1R : |
|
type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16u_C1R : |
|
type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormRelHint || ippiNormRel ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormRelHint ? CV_INSTRUMENT_FUN_IPP(ippiNormRelHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNormRel, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
normType &= NORM_TYPE_MASK; |
|
|
|
size_t total_size = src1.total(); |
|
int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; |
|
if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) |
|
&& cols > 0 && (size_t)rows*cols == total_size ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
IppiSize sz = { cols, rows }; |
|
int type = src1.type(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiMaskNormDiffFuncC1 ippiNormDiff_C1MR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_32f_C1MR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_32f_C1MR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_8u_C1MR : |
|
type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_16u_C1MR : |
|
type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_32f_C1MR : |
|
0) : 0; |
|
if( ippiNormDiff_C1MR ) |
|
{ |
|
Ipp64f norm; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC3)(const void *, int, const void *, int, const void *, int, IppiSize, int, Ipp64f *); |
|
ippiMaskNormDiffFuncC3 ippiNormDiff_C3CMR = |
|
normType == NORM_INF ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_32f_C3CMR : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_32f_C3CMR : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_8u_C3CMR : |
|
type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_16u_C3CMR : |
|
type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_32f_C3CMR : |
|
0) : 0; |
|
if( ippiNormDiff_C3CMR ) |
|
{ |
|
Ipp64f norm1, norm2, norm3; |
|
if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) |
|
{ |
|
Ipp64f norm = |
|
normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : |
|
normType == NORM_L1 ? norm1 + norm2 + norm3 : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : |
|
0; |
|
result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); |
|
return true; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
IppiSize sz = { cols*src1.channels(), rows }; |
|
int type = src1.depth(); |
|
|
|
typedef IppStatus (CV_STDCALL* ippiNormDiffFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); |
|
typedef IppStatus (CV_STDCALL* ippiNormDiffFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); |
|
ippiNormDiffFuncHint ippiNormDiffHint = |
|
normType == NORM_L1 ? |
|
(type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L1_32f_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L2_32f_C1R : |
|
0) : 0; |
|
ippiNormDiffFuncNoHint ippiNormDiff = |
|
normType == NORM_INF ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16s_C1R : |
|
type == CV_32F ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_32f_C1R : |
|
0) : |
|
normType == NORM_L1 ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16s_C1R : |
|
0) : |
|
normType == NORM_L2 || normType == NORM_L2SQR ? |
|
(type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_8u_C1R : |
|
type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16u_C1R : |
|
type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16s_C1R : |
|
0) : 0; |
|
if( ippiNormDiffHint || ippiNormDiff ) |
|
{ |
|
Ipp64f norm; |
|
IppStatus ret = ippiNormDiffHint ? CV_INSTRUMENT_FUN_IPP(ippiNormDiffHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : |
|
CV_INSTRUMENT_FUN_IPP(ippiNormDiff, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); |
|
if( ret >= 0 ) |
|
{ |
|
result = (normType == NORM_L2SQR) ? norm * norm : norm; |
|
return true; |
|
} |
|
} |
|
} |
|
} |
|
#else |
|
CV_UNUSED(_src1); CV_UNUSED(_src2); CV_UNUSED(normType); CV_UNUSED(_mask); CV_UNUSED(result); |
|
#endif |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
|
|
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert( _src1.sameSize(_src2) && _src1.type() == _src2.type() ); |
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP |
|
double _result = 0; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src1.isUMat()), |
|
ocl_norm(_src1, _src2, normType, _mask, _result), |
|
_result) |
|
#endif |
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(_src1, _src2, normType, _mask, _result), _result); |
|
|
|
if( normType & CV_RELATIVE ) |
|
{ |
|
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON); |
|
} |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
int depth = src1.depth(), cn = src1.channels(); |
|
|
|
normType &= 7; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || |
|
normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); |
|
|
|
if( src1.isContinuous() && src2.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src1.total()*src1.channels(); |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( src1.depth() == CV_32F ) |
|
{ |
|
const float* data1 = src1.ptr<float>(); |
|
const float* data2 = src2.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_xor(src1, src2, temp); |
|
bitwise_and(temp, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src1, &src2, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
result += hal::normHamming(ptrs[0], ptrs[1], total, cellSize); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
NormDiffFunc func = getNormDiffFunc(normType >> 1, depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src1, &src2, &mask, 0}; |
|
uchar* ptrs[3]; |
|
union |
|
{ |
|
double d; |
|
float f; |
|
int i; |
|
unsigned u; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); |
|
unsigned isum = 0; |
|
unsigned *ibuf = &result.u; |
|
size_t esz = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
ibuf = &isum; |
|
esz = src1.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
ptrs[1] += bsz*esz; |
|
if( ptrs[2] ) |
|
ptrs[2] += bsz; |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
; |
|
else if( depth == CV_32F ) |
|
result.d = result.f; |
|
else |
|
result.d = result.u; |
|
} |
|
else if( normType == NORM_L2 ) |
|
result.d = std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
|
|
///////////////////////////////////// batch distance /////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename _Tp, typename _Rt> |
|
void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2, |
|
int nvecs, int len, _Rt* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len); |
|
} |
|
else |
|
{ |
|
_Rt val0 = std::numeric_limits<_Rt>::max(); |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; |
|
} |
|
} |
|
|
|
template<typename _Tp, typename _Rt> |
|
void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2, |
|
int nvecs, int len, _Rt* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len); |
|
} |
|
else |
|
{ |
|
_Rt val0 = std::numeric_limits<_Rt>::max(); |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; |
|
} |
|
} |
|
|
|
template<typename _Tp, typename _Rt> |
|
void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2, |
|
int nvecs, int len, _Rt* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)); |
|
} |
|
else |
|
{ |
|
_Rt val0 = std::numeric_limits<_Rt>::max(); |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0; |
|
} |
|
} |
|
|
|
static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len); |
|
} |
|
else |
|
{ |
|
int val0 = INT_MAX; |
|
for( int i = 0; i < nvecs; i++ ) |
|
{ |
|
if (mask[i]) |
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len); |
|
else |
|
dist[i] = val0; |
|
} |
|
} |
|
} |
|
|
|
static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len, 2); |
|
} |
|
else |
|
{ |
|
int val0 = INT_MAX; |
|
for( int i = 0; i < nvecs; i++ ) |
|
{ |
|
if (mask[i]) |
|
dist[i] = hal::normHamming(src1, src2 + step2*i, len, 2); |
|
else |
|
dist[i] = val0; |
|
} |
|
} |
|
} |
|
|
|
static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
batchDistL1_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL1_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
batchDistL2Sqr_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2Sqr_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL1_32f(const float* src1, const float* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL1_<float, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2Sqr_<float, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2_32f(const float* src1, const float* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2_<float, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, uchar* dist, const uchar* mask); |
|
|
|
|
|
struct BatchDistInvoker : public ParallelLoopBody |
|
{ |
|
BatchDistInvoker( const Mat& _src1, const Mat& _src2, |
|
Mat& _dist, Mat& _nidx, int _K, |
|
const Mat& _mask, int _update, |
|
BatchDistFunc _func) |
|
{ |
|
src1 = &_src1; |
|
src2 = &_src2; |
|
dist = &_dist; |
|
nidx = &_nidx; |
|
K = _K; |
|
mask = &_mask; |
|
update = _update; |
|
func = _func; |
|
} |
|
|
|
void operator()(const Range& range) const |
|
{ |
|
AutoBuffer<int> buf(src2->rows); |
|
int* bufptr = buf; |
|
|
|
for( int i = range.start; i < range.end; i++ ) |
|
{ |
|
func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols, |
|
K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0); |
|
|
|
if( K > 0 ) |
|
{ |
|
int* nidxptr = nidx->ptr<int>(i); |
|
// since positive float's can be compared just like int's, |
|
// we handle both CV_32S and CV_32F cases with a single branch |
|
int* distptr = (int*)dist->ptr(i); |
|
|
|
int j, k; |
|
|
|
for( j = 0; j < src2->rows; j++ ) |
|
{ |
|
int d = bufptr[j]; |
|
if( d < distptr[K-1] ) |
|
{ |
|
for( k = K-2; k >= 0 && distptr[k] > d; k-- ) |
|
{ |
|
nidxptr[k+1] = nidxptr[k]; |
|
distptr[k+1] = distptr[k]; |
|
} |
|
nidxptr[k+1] = j + update; |
|
distptr[k+1] = d; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
const Mat *src1; |
|
const Mat *src2; |
|
Mat *dist; |
|
Mat *nidx; |
|
const Mat *mask; |
|
int K; |
|
int update; |
|
BatchDistFunc func; |
|
}; |
|
|
|
} |
|
|
|
void cv::batchDistance( InputArray _src1, InputArray _src2, |
|
OutputArray _dist, int dtype, OutputArray _nidx, |
|
int normType, int K, InputArray _mask, |
|
int update, bool crosscheck ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
int type = src1.type(); |
|
CV_Assert( type == src2.type() && src1.cols == src2.cols && |
|
(type == CV_32F || type == CV_8U)); |
|
CV_Assert( _nidx.needed() == (K > 0) ); |
|
|
|
if( dtype == -1 ) |
|
{ |
|
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F; |
|
} |
|
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F); |
|
|
|
K = std::min(K, src2.rows); |
|
|
|
_dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype); |
|
Mat dist = _dist.getMat(), nidx; |
|
if( _nidx.needed() ) |
|
{ |
|
_nidx.create(dist.size(), CV_32S); |
|
nidx = _nidx.getMat(); |
|
} |
|
|
|
if( update == 0 && K > 0 ) |
|
{ |
|
dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX); |
|
nidx = Scalar::all(-1); |
|
} |
|
|
|
if( crosscheck ) |
|
{ |
|
CV_Assert( K == 1 && update == 0 && mask.empty() ); |
|
Mat tdist, tidx; |
|
batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false); |
|
|
|
// if an idx-th element from src1 appeared to be the nearest to i-th element of src2, |
|
// we update the minimum mutual distance between idx-th element of src1 and the whole src2 set. |
|
// As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest |
|
// to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1. |
|
// If nidx[idx] = -1, it means that there is no such ideal couple for it in src2. |
|
// This O(N) procedure is called cross-check and it helps to eliminate some false matches. |
|
if( dtype == CV_32S ) |
|
{ |
|
for( int i = 0; i < tdist.rows; i++ ) |
|
{ |
|
int idx = tidx.at<int>(i); |
|
int d = tdist.at<int>(i), d0 = dist.at<int>(idx); |
|
if( d < d0 ) |
|
{ |
|
dist.at<int>(idx) = d; |
|
nidx.at<int>(idx) = i + update; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < tdist.rows; i++ ) |
|
{ |
|
int idx = tidx.at<int>(i); |
|
float d = tdist.at<float>(i), d0 = dist.at<float>(idx); |
|
if( d < d0 ) |
|
{ |
|
dist.at<float>(idx) = d; |
|
nidx.at<int>(idx) = i + update; |
|
} |
|
} |
|
} |
|
return; |
|
} |
|
|
|
BatchDistFunc func = 0; |
|
if( type == CV_8U ) |
|
{ |
|
if( normType == NORM_L1 && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistL1_8u32s; |
|
else if( normType == NORM_L1 && dtype == CV_32F ) |
|
func = (BatchDistFunc)batchDistL1_8u32f; |
|
else if( normType == NORM_L2SQR && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistL2Sqr_8u32s; |
|
else if( normType == NORM_L2SQR && dtype == CV_32F ) |
|
func = (BatchDistFunc)batchDistL2Sqr_8u32f; |
|
else if( normType == NORM_L2 && dtype == CV_32F ) |
|
func = (BatchDistFunc)batchDistL2_8u32f; |
|
else if( normType == NORM_HAMMING && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistHamming; |
|
else if( normType == NORM_HAMMING2 && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistHamming2; |
|
} |
|
else if( type == CV_32F && dtype == CV_32F ) |
|
{ |
|
if( normType == NORM_L1 ) |
|
func = (BatchDistFunc)batchDistL1_32f; |
|
else if( normType == NORM_L2SQR ) |
|
func = (BatchDistFunc)batchDistL2Sqr_32f; |
|
else if( normType == NORM_L2 ) |
|
func = (BatchDistFunc)batchDistL2_32f; |
|
} |
|
|
|
if( func == 0 ) |
|
CV_Error_(CV_StsUnsupportedFormat, |
|
("The combination of type=%d, dtype=%d and normType=%d is not supported", |
|
type, dtype, normType)); |
|
|
|
parallel_for_(Range(0, src1.rows), |
|
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func)); |
|
} |
|
|
|
|
|
void cv::findNonZero( InputArray _src, OutputArray _idx ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
int n = countNonZero(src); |
|
if( n == 0 ) |
|
{ |
|
_idx.release(); |
|
return; |
|
} |
|
if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() ) |
|
_idx.release(); |
|
_idx.create(n, 1, CV_32SC2); |
|
Mat idx = _idx.getMat(); |
|
CV_Assert(idx.isContinuous()); |
|
Point* idx_ptr = idx.ptr<Point>(); |
|
|
|
for( int i = 0; i < src.rows; i++ ) |
|
{ |
|
const uchar* bin_ptr = src.ptr(i); |
|
for( int j = 0; j < src.cols; j++ ) |
|
if( bin_ptr[j] ) |
|
*idx_ptr++ = Point(j, i); |
|
} |
|
} |
|
|
|
double cv::PSNR(InputArray _src1, InputArray _src2) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
//Input arrays must have depth CV_8U |
|
CV_Assert( _src1.depth() == CV_8U && _src2.depth() == CV_8U ); |
|
|
|
double diff = std::sqrt(norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels())); |
|
return 20*log10(255./(diff+DBL_EPSILON)); |
|
} |
|
|
|
|
|
CV_IMPL CvScalar cvSum( const CvArr* srcarr ) |
|
{ |
|
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1)); |
|
if( CV_IS_IMAGE(srcarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)srcarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
sum = cv::Scalar(sum[coi-1]); |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
CV_IMPL int cvCountNonZero( const CvArr* imgarr ) |
|
{ |
|
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); |
|
if( img.channels() > 1 ) |
|
cv::extractImageCOI(imgarr, img); |
|
return countNonZero(img); |
|
} |
|
|
|
|
|
CV_IMPL CvScalar |
|
cvAvg( const void* imgarr, const void* maskarr ) |
|
{ |
|
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); |
|
cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr)); |
|
if( CV_IS_IMAGE(imgarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)imgarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
mean = cv::Scalar(mean[coi-1]); |
|
} |
|
} |
|
return mean; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr ) |
|
{ |
|
cv::Scalar mean, sdv; |
|
|
|
cv::Mat mask; |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
|
|
cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask ); |
|
|
|
if( CV_IS_IMAGE(imgarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)imgarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
mean = cv::Scalar(mean[coi-1]); |
|
sdv = cv::Scalar(sdv[coi-1]); |
|
} |
|
} |
|
|
|
if( _mean ) |
|
*(cv::Scalar*)_mean = mean; |
|
if( _sdv ) |
|
*(cv::Scalar*)_sdv = sdv; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal, |
|
CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr ) |
|
{ |
|
cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1); |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
if( img.channels() > 1 ) |
|
cv::extractImageCOI(imgarr, img); |
|
|
|
cv::minMaxLoc( img, _minVal, _maxVal, |
|
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask ); |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr ) |
|
{ |
|
cv::Mat a, mask; |
|
if( !imgA ) |
|
{ |
|
imgA = imgB; |
|
imgB = 0; |
|
} |
|
|
|
a = cv::cvarrToMat(imgA, false, true, 1); |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
|
|
if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 ) |
|
cv::extractImageCOI(imgA, a); |
|
|
|
if( !imgB ) |
|
return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask); |
|
|
|
cv::Mat b = cv::cvarrToMat(imgB, false, true, 1); |
|
if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 ) |
|
cv::extractImageCOI(imgB, b); |
|
|
|
return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask); |
|
} |
|
|
|
namespace cv { namespace hal { |
|
|
|
extern const uchar popCountTable[256] = |
|
{ |
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 |
|
}; |
|
|
|
static const uchar popCountTable2[] = |
|
{ |
|
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 |
|
}; |
|
|
|
static const uchar popCountTable4[] = |
|
{ |
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
|
}; |
|
|
|
|
|
int normHamming(const uchar* a, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
return -1; |
|
int i = 0; |
|
int result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i]]; |
|
return result; |
|
} |
|
|
|
int normHamming(const uchar* a, const uchar* b, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, b, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
return -1; |
|
int i = 0; |
|
int result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + |
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i] ^ b[i]]; |
|
return result; |
|
} |
|
|
|
float normL2Sqr_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_AVX2 |
|
float CV_DECL_ALIGNED(32) buf[8]; |
|
__m256 d0 = _mm256_setzero_ps(); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m256 t0 = _mm256_sub_ps(_mm256_loadu_ps(a + j), _mm256_loadu_ps(b + j)); |
|
#if CV_FMA3 |
|
d0 = _mm256_fmadd_ps(t0, t0, d0); |
|
#else |
|
d0 = _mm256_add_ps(d0, _mm256_mul_ps(t0, t0)); |
|
#endif |
|
} |
|
_mm256_store_ps(buf, d0); |
|
d = buf[0] + buf[1] + buf[2] + buf[3] + buf[4] + buf[5] + buf[6] + buf[7]; |
|
#elif CV_SSE |
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); |
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); |
|
d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0)); |
|
d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1)); |
|
} |
|
_mm_store_ps(buf, _mm_add_ps(d0, d1)); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3]; |
|
d += t0*t0 + t1*t1 + t2*t2 + t3*t3; |
|
} |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
{ |
|
float t = a[j] - b[j]; |
|
d += t*t; |
|
} |
|
return d; |
|
} |
|
|
|
|
|
float normL1_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_SSE |
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
static const int CV_DECL_ALIGNED(16) absbuf[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; |
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); |
|
__m128 absmask = _mm_load_ps((const float*)absbuf); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); |
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); |
|
d0 = _mm_add_ps(d0, _mm_and_ps(t0, absmask)); |
|
d1 = _mm_add_ps(d1, _mm_and_ps(t1, absmask)); |
|
} |
|
_mm_store_ps(buf, _mm_add_ps(d0, d1)); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#elif CV_NEON |
|
float32x4_t v_sum = vdupq_n_f32(0.0f); |
|
for ( ; j <= n - 4; j += 4) |
|
v_sum = vaddq_f32(v_sum, vabdq_f32(vld1q_f32(a + j), vld1q_f32(b + j))); |
|
|
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
vst1q_f32(buf, v_sum); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
} |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
int normL1_(const uchar* a, const uchar* b, int n) |
|
{ |
|
int j = 0, d = 0; |
|
#if CV_SSE |
|
__m128i d0 = _mm_setzero_si128(); |
|
|
|
for( ; j <= n - 16; j += 16 ) |
|
{ |
|
__m128i t0 = _mm_loadu_si128((const __m128i*)(a + j)); |
|
__m128i t1 = _mm_loadu_si128((const __m128i*)(b + j)); |
|
|
|
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); |
|
} |
|
|
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
__m128i t0 = _mm_cvtsi32_si128(*(const int*)(a + j)); |
|
__m128i t1 = _mm_cvtsi32_si128(*(const int*)(b + j)); |
|
|
|
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); |
|
} |
|
d = _mm_cvtsi128_si32(_mm_add_epi32(d0, _mm_unpackhi_epi64(d0, d0))); |
|
#elif CV_NEON |
|
uint32x4_t v_sum = vdupq_n_u32(0.0f); |
|
for ( ; j <= n - 16; j += 16) |
|
{ |
|
uint8x16_t v_dst = vabdq_u8(vld1q_u8(a + j), vld1q_u8(b + j)); |
|
uint16x8_t v_low = vmovl_u8(vget_low_u8(v_dst)), v_high = vmovl_u8(vget_high_u8(v_dst)); |
|
v_sum = vaddq_u32(v_sum, vaddl_u16(vget_low_u16(v_low), vget_low_u16(v_high))); |
|
v_sum = vaddq_u32(v_sum, vaddl_u16(vget_high_u16(v_low), vget_high_u16(v_high))); |
|
} |
|
|
|
uint CV_DECL_ALIGNED(16) buf[4]; |
|
vst1q_u32(buf, v_sum); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
} |
|
} |
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
}} //cv::hal
|
|
|