mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1114 lines
34 KiB
1114 lines
34 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_KMEANS_INDEX_H_ |
|
#define OPENCV_FLANN_KMEANS_INDEX_H_ |
|
|
|
#include <algorithm> |
|
#include <string> |
|
#include <map> |
|
#include <cassert> |
|
#include <limits> |
|
#include <cmath> |
|
|
|
#include "general.h" |
|
#include "nn_index.h" |
|
#include "dist.h" |
|
#include "matrix.h" |
|
#include "result_set.h" |
|
#include "heap.h" |
|
#include "allocator.h" |
|
#include "random.h" |
|
#include "saving.h" |
|
#include "logger.h" |
|
|
|
|
|
namespace cvflann |
|
{ |
|
|
|
struct KMeansIndexParams : public IndexParams |
|
{ |
|
KMeansIndexParams(int branching = 32, int iterations = 11, |
|
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) |
|
{ |
|
(*this)["algorithm"] = FLANN_INDEX_KMEANS; |
|
// branching factor |
|
(*this)["branching"] = branching; |
|
// max iterations to perform in one kmeans clustering (kmeans tree) |
|
(*this)["iterations"] = iterations; |
|
// algorithm used for picking the initial cluster centers for kmeans tree |
|
(*this)["centers_init"] = centers_init; |
|
// cluster boundary index. Used when searching the kmeans tree |
|
(*this)["cb_index"] = cb_index; |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Hierarchical kmeans index |
|
* |
|
* Contains a tree constructed through a hierarchical kmeans clustering |
|
* and other information for indexing a set of points for nearest-neighbour matching. |
|
*/ |
|
template <typename Distance> |
|
class KMeansIndex : public NNIndex<Distance> |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
|
|
|
|
typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); |
|
|
|
/** |
|
* The function used for choosing the cluster centers. |
|
*/ |
|
centersAlgFunction chooseCenters; |
|
|
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means clustering in a random manner. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* indices_length = length of indices vector |
|
* |
|
*/ |
|
void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
UniqueRandom r(indices_length); |
|
|
|
int index; |
|
for (index=0; index<k; ++index) { |
|
bool duplicate = true; |
|
int rnd; |
|
while (duplicate) { |
|
duplicate = false; |
|
rnd = r.next(); |
|
if (rnd<0) { |
|
centers_length = index; |
|
return; |
|
} |
|
|
|
centers[index] = indices[rnd]; |
|
|
|
for (int j=0; j<index; ++j) { |
|
DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols); |
|
if (sq<1e-16) { |
|
duplicate = true; |
|
} |
|
} |
|
} |
|
} |
|
|
|
centers_length = index; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means using Gonzales' algorithm |
|
* so that the centers are spaced apart from each other. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
int n = indices_length; |
|
|
|
int rnd = rand_int(n); |
|
assert(rnd >=0 && rnd < n); |
|
|
|
centers[0] = indices[rnd]; |
|
|
|
int index; |
|
for (index=1; index<k; ++index) { |
|
|
|
int best_index = -1; |
|
DistanceType best_val = 0; |
|
for (int j=0; j<n; ++j) { |
|
DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols); |
|
for (int i=1; i<index; ++i) { |
|
DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols); |
|
if (tmp_dist<dist) { |
|
dist = tmp_dist; |
|
} |
|
} |
|
if (dist>best_val) { |
|
best_val = dist; |
|
best_index = j; |
|
} |
|
} |
|
if (best_index!=-1) { |
|
centers[index] = indices[best_index]; |
|
} |
|
else { |
|
break; |
|
} |
|
} |
|
centers_length = index; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means using the algorithm |
|
* proposed in the KMeans++ paper: |
|
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding |
|
* |
|
* Implementation of this function was converted from the one provided in Arthur's code. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
int n = indices_length; |
|
|
|
double currentPot = 0; |
|
DistanceType* closestDistSq = new DistanceType[n]; |
|
|
|
// Choose one random center and set the closestDistSq values |
|
int index = rand_int(n); |
|
assert(index >=0 && index < n); |
|
centers[0] = indices[index]; |
|
|
|
for (int i = 0; i < n; i++) { |
|
closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); |
|
currentPot += closestDistSq[i]; |
|
} |
|
|
|
|
|
const int numLocalTries = 1; |
|
|
|
// Choose each center |
|
int centerCount; |
|
for (centerCount = 1; centerCount < k; centerCount++) { |
|
|
|
// Repeat several trials |
|
double bestNewPot = -1; |
|
int bestNewIndex = -1; |
|
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { |
|
|
|
// Choose our center - have to be slightly careful to return a valid answer even accounting |
|
// for possible rounding errors |
|
double randVal = rand_double(currentPot); |
|
for (index = 0; index < n-1; index++) { |
|
if (randVal <= closestDistSq[index]) break; |
|
else randVal -= closestDistSq[index]; |
|
} |
|
|
|
// Compute the new potential |
|
double newPot = 0; |
|
for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] ); |
|
|
|
// Store the best result |
|
if ((bestNewPot < 0)||(newPot < bestNewPot)) { |
|
bestNewPot = newPot; |
|
bestNewIndex = index; |
|
} |
|
} |
|
|
|
// Add the appropriate center |
|
centers[centerCount] = indices[bestNewIndex]; |
|
currentPot = bestNewPot; |
|
for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] ); |
|
} |
|
|
|
centers_length = centerCount; |
|
|
|
delete[] closestDistSq; |
|
} |
|
|
|
|
|
|
|
public: |
|
|
|
flann_algorithm_t getType() const |
|
{ |
|
return FLANN_INDEX_KMEANS; |
|
} |
|
|
|
/** |
|
* Index constructor |
|
* |
|
* Params: |
|
* inputData = dataset with the input features |
|
* params = parameters passed to the hierarchical k-means algorithm |
|
*/ |
|
KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), |
|
Distance d = Distance()) |
|
: dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) |
|
{ |
|
memoryCounter_ = 0; |
|
|
|
size_ = dataset_.rows; |
|
veclen_ = dataset_.cols; |
|
|
|
branching_ = get_param(params,"branching",32); |
|
iterations_ = get_param(params,"iterations",11); |
|
if (iterations_<0) { |
|
iterations_ = (std::numeric_limits<int>::max)(); |
|
} |
|
centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); |
|
|
|
if (centers_init_==FLANN_CENTERS_RANDOM) { |
|
chooseCenters = &KMeansIndex::chooseCentersRandom; |
|
} |
|
else if (centers_init_==FLANN_CENTERS_GONZALES) { |
|
chooseCenters = &KMeansIndex::chooseCentersGonzales; |
|
} |
|
else if (centers_init_==FLANN_CENTERS_KMEANSPP) { |
|
chooseCenters = &KMeansIndex::chooseCentersKMeanspp; |
|
} |
|
else { |
|
throw FLANNException("Unknown algorithm for choosing initial centers."); |
|
} |
|
cb_index_ = 0.4f; |
|
|
|
} |
|
|
|
|
|
KMeansIndex(const KMeansIndex&); |
|
KMeansIndex& operator=(const KMeansIndex&); |
|
|
|
|
|
/** |
|
* Index destructor. |
|
* |
|
* Release the memory used by the index. |
|
*/ |
|
virtual ~KMeansIndex() |
|
{ |
|
if (root_ != NULL) { |
|
free_centers(root_); |
|
} |
|
if (indices_!=NULL) { |
|
delete[] indices_; |
|
} |
|
} |
|
|
|
/** |
|
* Returns size of index. |
|
*/ |
|
size_t size() const |
|
{ |
|
return size_; |
|
} |
|
|
|
/** |
|
* Returns the length of an index feature. |
|
*/ |
|
size_t veclen() const |
|
{ |
|
return veclen_; |
|
} |
|
|
|
|
|
void set_cb_index( float index) |
|
{ |
|
cb_index_ = index; |
|
} |
|
|
|
/** |
|
* Computes the inde memory usage |
|
* Returns: memory used by the index |
|
*/ |
|
int usedMemory() const |
|
{ |
|
return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; |
|
} |
|
|
|
/** |
|
* Builds the index |
|
*/ |
|
void buildIndex() |
|
{ |
|
if (branching_<2) { |
|
throw FLANNException("Branching factor must be at least 2"); |
|
} |
|
|
|
indices_ = new int[size_]; |
|
for (size_t i=0; i<size_; ++i) { |
|
indices_[i] = int(i); |
|
} |
|
|
|
root_ = pool_.allocate<KMeansNode>(); |
|
computeNodeStatistics(root_, indices_, (int)size_); |
|
computeClustering(root_, indices_, (int)size_, branching_,0); |
|
} |
|
|
|
|
|
void saveIndex(FILE* stream) |
|
{ |
|
save_value(stream, branching_); |
|
save_value(stream, iterations_); |
|
save_value(stream, memoryCounter_); |
|
save_value(stream, cb_index_); |
|
save_value(stream, *indices_, (int)size_); |
|
|
|
save_tree(stream, root_); |
|
} |
|
|
|
|
|
void loadIndex(FILE* stream) |
|
{ |
|
load_value(stream, branching_); |
|
load_value(stream, iterations_); |
|
load_value(stream, memoryCounter_); |
|
load_value(stream, cb_index_); |
|
if (indices_!=NULL) { |
|
delete[] indices_; |
|
} |
|
indices_ = new int[size_]; |
|
load_value(stream, *indices_, size_); |
|
|
|
if (root_!=NULL) { |
|
free_centers(root_); |
|
} |
|
load_tree(stream, root_); |
|
|
|
index_params_["algorithm"] = getType(); |
|
index_params_["branching"] = branching_; |
|
index_params_["iterations"] = iterations_; |
|
index_params_["centers_init"] = centers_init_; |
|
index_params_["cb_index"] = cb_index_; |
|
|
|
} |
|
|
|
|
|
/** |
|
* Find set of nearest neighbors to vec. Their indices are stored inside |
|
* the result object. |
|
* |
|
* Params: |
|
* result = the result object in which the indices of the nearest-neighbors are stored |
|
* vec = the vector for which to search the nearest neighbors |
|
* searchParams = parameters that influence the search algorithm (checks, cb_index) |
|
*/ |
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) |
|
{ |
|
|
|
int maxChecks = get_param(searchParams,"checks",32); |
|
|
|
if (maxChecks==FLANN_CHECKS_UNLIMITED) { |
|
findExactNN(root_, result, vec); |
|
} |
|
else { |
|
// Priority queue storing intermediate branches in the best-bin-first search |
|
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); |
|
|
|
int checks = 0; |
|
findNN(root_, result, vec, checks, maxChecks, heap); |
|
|
|
BranchSt branch; |
|
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { |
|
KMeansNodePtr node = branch.node; |
|
findNN(node, result, vec, checks, maxChecks, heap); |
|
} |
|
assert(result.full()); |
|
|
|
delete heap; |
|
} |
|
|
|
} |
|
|
|
/** |
|
* Clustering function that takes a cut in the hierarchical k-means |
|
* tree and return the clusters centers of that clustering. |
|
* Params: |
|
* numClusters = number of clusters to have in the clustering computed |
|
* Returns: number of cluster centers |
|
*/ |
|
int getClusterCenters(Matrix<DistanceType>& centers) |
|
{ |
|
int numClusters = centers.rows; |
|
if (numClusters<1) { |
|
throw FLANNException("Number of clusters must be at least 1"); |
|
} |
|
|
|
DistanceType variance; |
|
KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; |
|
|
|
int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); |
|
|
|
Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); |
|
|
|
for (int i=0; i<clusterCount; ++i) { |
|
DistanceType* center = clusters[i]->pivot; |
|
for (size_t j=0; j<veclen_; ++j) { |
|
centers[i][j] = center[j]; |
|
} |
|
} |
|
delete[] clusters; |
|
|
|
return clusterCount; |
|
} |
|
|
|
IndexParams getParameters() const |
|
{ |
|
return index_params_; |
|
} |
|
|
|
|
|
private: |
|
/** |
|
* Struture representing a node in the hierarchical k-means tree. |
|
*/ |
|
struct KMeansNode |
|
{ |
|
/** |
|
* The cluster center. |
|
*/ |
|
DistanceType* pivot; |
|
/** |
|
* The cluster radius. |
|
*/ |
|
DistanceType radius; |
|
/** |
|
* The cluster mean radius. |
|
*/ |
|
DistanceType mean_radius; |
|
/** |
|
* The cluster variance. |
|
*/ |
|
DistanceType variance; |
|
/** |
|
* The cluster size (number of points in the cluster) |
|
*/ |
|
int size; |
|
/** |
|
* Child nodes (only for non-terminal nodes) |
|
*/ |
|
KMeansNode** childs; |
|
/** |
|
* Node points (only for terminal nodes) |
|
*/ |
|
int* indices; |
|
/** |
|
* Level |
|
*/ |
|
int level; |
|
}; |
|
typedef KMeansNode* KMeansNodePtr; |
|
|
|
/** |
|
* Alias definition for a nicer syntax. |
|
*/ |
|
typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt; |
|
|
|
|
|
|
|
|
|
void save_tree(FILE* stream, KMeansNodePtr node) |
|
{ |
|
save_value(stream, *node); |
|
save_value(stream, *(node->pivot), (int)veclen_); |
|
if (node->childs==NULL) { |
|
int indices_offset = (int)(node->indices - indices_); |
|
save_value(stream, indices_offset); |
|
} |
|
else { |
|
for(int i=0; i<branching_; ++i) { |
|
save_tree(stream, node->childs[i]); |
|
} |
|
} |
|
} |
|
|
|
|
|
void load_tree(FILE* stream, KMeansNodePtr& node) |
|
{ |
|
node = pool_.allocate<KMeansNode>(); |
|
load_value(stream, *node); |
|
node->pivot = new DistanceType[veclen_]; |
|
load_value(stream, *(node->pivot), (int)veclen_); |
|
if (node->childs==NULL) { |
|
int indices_offset; |
|
load_value(stream, indices_offset); |
|
node->indices = indices_ + indices_offset; |
|
} |
|
else { |
|
node->childs = pool_.allocate<KMeansNodePtr>(branching_); |
|
for(int i=0; i<branching_; ++i) { |
|
load_tree(stream, node->childs[i]); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Helper function |
|
*/ |
|
void free_centers(KMeansNodePtr node) |
|
{ |
|
delete[] node->pivot; |
|
if (node->childs!=NULL) { |
|
for (int k=0; k<branching_; ++k) { |
|
free_centers(node->childs[k]); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Computes the statistics of a node (mean, radius, variance). |
|
* |
|
* Params: |
|
* node = the node to use |
|
* indices = the indices of the points belonging to the node |
|
*/ |
|
void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length) |
|
{ |
|
|
|
DistanceType radius = 0; |
|
DistanceType variance = 0; |
|
DistanceType* mean = new DistanceType[veclen_]; |
|
memoryCounter_ += int(veclen_*sizeof(DistanceType)); |
|
|
|
memset(mean,0,veclen_*sizeof(DistanceType)); |
|
|
|
for (size_t i=0; i<size_; ++i) { |
|
ElementType* vec = dataset_[indices[i]]; |
|
for (size_t j=0; j<veclen_; ++j) { |
|
mean[j] += vec[j]; |
|
} |
|
variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); |
|
} |
|
for (size_t j=0; j<veclen_; ++j) { |
|
mean[j] /= size_; |
|
} |
|
variance /= size_; |
|
variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); |
|
|
|
DistanceType tmp = 0; |
|
for (int i=0; i<indices_length; ++i) { |
|
tmp = distance_(mean, dataset_[indices[i]], veclen_); |
|
if (tmp>radius) { |
|
radius = tmp; |
|
} |
|
} |
|
|
|
node->variance = variance; |
|
node->radius = radius; |
|
node->pivot = mean; |
|
} |
|
|
|
|
|
/** |
|
* The method responsible with actually doing the recursive hierarchical |
|
* clustering |
|
* |
|
* Params: |
|
* node = the node to cluster |
|
* indices = indices of the points belonging to the current node |
|
* branching = the branching factor to use in the clustering |
|
* |
|
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) |
|
*/ |
|
void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) |
|
{ |
|
node->size = indices_length; |
|
node->level = level; |
|
|
|
if (indices_length < branching) { |
|
node->indices = indices; |
|
std::sort(node->indices,node->indices+indices_length); |
|
node->childs = NULL; |
|
return; |
|
} |
|
|
|
int* centers_idx = new int[branching]; |
|
int centers_length; |
|
(this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); |
|
|
|
if (centers_length<branching) { |
|
node->indices = indices; |
|
std::sort(node->indices,node->indices+indices_length); |
|
node->childs = NULL; |
|
delete [] centers_idx; |
|
return; |
|
} |
|
|
|
|
|
Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_); |
|
for (int i=0; i<centers_length; ++i) { |
|
ElementType* vec = dataset_[centers_idx[i]]; |
|
for (size_t k=0; k<veclen_; ++k) { |
|
dcenters[i][k] = double(vec[k]); |
|
} |
|
} |
|
delete[] centers_idx; |
|
|
|
std::vector<DistanceType> radiuses(branching); |
|
int* count = new int[branching]; |
|
for (int i=0; i<branching; ++i) { |
|
radiuses[i] = 0; |
|
count[i] = 0; |
|
} |
|
|
|
// assign points to clusters |
|
int* belongs_to = new int[indices_length]; |
|
for (int i=0; i<indices_length; ++i) { |
|
|
|
DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); |
|
belongs_to[i] = 0; |
|
for (int j=1; j<branching; ++j) { |
|
DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); |
|
if (sq_dist>new_sq_dist) { |
|
belongs_to[i] = j; |
|
sq_dist = new_sq_dist; |
|
} |
|
} |
|
if (sq_dist>radiuses[belongs_to[i]]) { |
|
radiuses[belongs_to[i]] = sq_dist; |
|
} |
|
count[belongs_to[i]]++; |
|
} |
|
|
|
bool converged = false; |
|
int iteration = 0; |
|
while (!converged && iteration<iterations_) { |
|
converged = true; |
|
iteration++; |
|
|
|
// compute the new cluster centers |
|
for (int i=0; i<branching; ++i) { |
|
memset(dcenters[i],0,sizeof(double)*veclen_); |
|
radiuses[i] = 0; |
|
} |
|
for (int i=0; i<indices_length; ++i) { |
|
ElementType* vec = dataset_[indices[i]]; |
|
double* center = dcenters[belongs_to[i]]; |
|
for (size_t k=0; k<veclen_; ++k) { |
|
center[k] += vec[k]; |
|
} |
|
} |
|
for (int i=0; i<branching; ++i) { |
|
int cnt = count[i]; |
|
for (size_t k=0; k<veclen_; ++k) { |
|
dcenters[i][k] /= cnt; |
|
} |
|
} |
|
|
|
// reassign points to clusters |
|
for (int i=0; i<indices_length; ++i) { |
|
DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); |
|
int new_centroid = 0; |
|
for (int j=1; j<branching; ++j) { |
|
DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); |
|
if (sq_dist>new_sq_dist) { |
|
new_centroid = j; |
|
sq_dist = new_sq_dist; |
|
} |
|
} |
|
if (sq_dist>radiuses[new_centroid]) { |
|
radiuses[new_centroid] = sq_dist; |
|
} |
|
if (new_centroid != belongs_to[i]) { |
|
count[belongs_to[i]]--; |
|
count[new_centroid]++; |
|
belongs_to[i] = new_centroid; |
|
|
|
converged = false; |
|
} |
|
} |
|
|
|
for (int i=0; i<branching; ++i) { |
|
// if one cluster converges to an empty cluster, |
|
// move an element into that cluster |
|
if (count[i]==0) { |
|
int j = (i+1)%branching; |
|
while (count[j]<=1) { |
|
j = (j+1)%branching; |
|
} |
|
|
|
for (int k=0; k<indices_length; ++k) { |
|
if (belongs_to[k]==j) { |
|
belongs_to[k] = i; |
|
count[j]--; |
|
count[i]++; |
|
break; |
|
} |
|
} |
|
converged = false; |
|
} |
|
} |
|
|
|
} |
|
|
|
DistanceType** centers = new DistanceType*[branching]; |
|
|
|
for (int i=0; i<branching; ++i) { |
|
centers[i] = new DistanceType[veclen_]; |
|
memoryCounter_ += (int)(veclen_*sizeof(DistanceType)); |
|
for (size_t k=0; k<veclen_; ++k) { |
|
centers[i][k] = (DistanceType)dcenters[i][k]; |
|
} |
|
} |
|
|
|
|
|
// compute kmeans clustering for each of the resulting clusters |
|
node->childs = pool_.allocate<KMeansNodePtr>(branching); |
|
int start = 0; |
|
int end = start; |
|
for (int c=0; c<branching; ++c) { |
|
int s = count[c]; |
|
|
|
DistanceType variance = 0; |
|
DistanceType mean_radius =0; |
|
for (int i=0; i<indices_length; ++i) { |
|
if (belongs_to[i]==c) { |
|
DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); |
|
variance += d; |
|
mean_radius += sqrt(d); |
|
std::swap(indices[i],indices[end]); |
|
std::swap(belongs_to[i],belongs_to[end]); |
|
end++; |
|
} |
|
} |
|
variance /= s; |
|
mean_radius /= s; |
|
variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); |
|
|
|
node->childs[c] = pool_.allocate<KMeansNode>(); |
|
node->childs[c]->radius = radiuses[c]; |
|
node->childs[c]->pivot = centers[c]; |
|
node->childs[c]->variance = variance; |
|
node->childs[c]->mean_radius = mean_radius; |
|
node->childs[c]->indices = NULL; |
|
computeClustering(node->childs[c],indices+start, end-start, branching, level+1); |
|
start=end; |
|
} |
|
|
|
delete[] dcenters.data; |
|
delete[] centers; |
|
delete[] count; |
|
delete[] belongs_to; |
|
} |
|
|
|
|
|
|
|
/** |
|
* Performs one descent in the hierarchical k-means tree. The branches not |
|
* visited are stored in a priority queue. |
|
* |
|
* Params: |
|
* node = node to explore |
|
* result = container for the k-nearest neighbors found |
|
* vec = query points |
|
* checks = how many points in the dataset have been checked so far |
|
* maxChecks = maximum dataset points to checks |
|
*/ |
|
|
|
|
|
void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, |
|
Heap<BranchSt>* heap) |
|
{ |
|
// Ignore those clusters that are too far away |
|
{ |
|
DistanceType bsq = distance_(vec, node->pivot, veclen_); |
|
DistanceType rsq = node->radius; |
|
DistanceType wsq = result.worstDist(); |
|
|
|
DistanceType val = bsq-rsq-wsq; |
|
DistanceType val2 = val*val-4*rsq*wsq; |
|
|
|
//if (val>0) { |
|
if ((val>0)&&(val2>0)) { |
|
return; |
|
} |
|
} |
|
|
|
if (node->childs==NULL) { |
|
if (checks>=maxChecks) { |
|
if (result.full()) return; |
|
} |
|
checks += node->size; |
|
for (int i=0; i<node->size; ++i) { |
|
int index = node->indices[i]; |
|
DistanceType dist = distance_(dataset_[index], vec, veclen_); |
|
result.addPoint(dist, index); |
|
} |
|
} |
|
else { |
|
DistanceType* domain_distances = new DistanceType[branching_]; |
|
int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); |
|
delete[] domain_distances; |
|
findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); |
|
} |
|
} |
|
|
|
/** |
|
* Helper function that computes the nearest childs of a node to a given query point. |
|
* Params: |
|
* node = the node |
|
* q = the query point |
|
* distances = array with the distances to each child node. |
|
* Returns: |
|
*/ |
|
int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap) |
|
{ |
|
|
|
int best_index = 0; |
|
domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); |
|
for (int i=1; i<branching_; ++i) { |
|
domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_); |
|
if (domain_distances[i]<domain_distances[best_index]) { |
|
best_index = i; |
|
} |
|
} |
|
|
|
// float* best_center = node->childs[best_index]->pivot; |
|
for (int i=0; i<branching_; ++i) { |
|
if (i != best_index) { |
|
domain_distances[i] -= cb_index_*node->childs[i]->variance; |
|
|
|
// float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); |
|
// if (domain_distances[i]<dist_to_border) { |
|
// domain_distances[i] = dist_to_border; |
|
// } |
|
heap->insert(BranchSt(node->childs[i],domain_distances[i])); |
|
} |
|
} |
|
|
|
return best_index; |
|
} |
|
|
|
|
|
/** |
|
* Function the performs exact nearest neighbor search by traversing the entire tree. |
|
*/ |
|
void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) |
|
{ |
|
// Ignore those clusters that are too far away |
|
{ |
|
DistanceType bsq = distance_(vec, node->pivot, veclen_); |
|
DistanceType rsq = node->radius; |
|
DistanceType wsq = result.worstDist(); |
|
|
|
DistanceType val = bsq-rsq-wsq; |
|
DistanceType val2 = val*val-4*rsq*wsq; |
|
|
|
// if (val>0) { |
|
if ((val>0)&&(val2>0)) { |
|
return; |
|
} |
|
} |
|
|
|
|
|
if (node->childs==NULL) { |
|
for (int i=0; i<node->size; ++i) { |
|
int index = node->indices[i]; |
|
DistanceType dist = distance_(dataset_[index], vec, veclen_); |
|
result.addPoint(dist, index); |
|
} |
|
} |
|
else { |
|
int* sort_indices = new int[branching_]; |
|
|
|
getCenterOrdering(node, vec, sort_indices); |
|
|
|
for (int i=0; i<branching_; ++i) { |
|
findExactNN(node->childs[sort_indices[i]],result,vec); |
|
} |
|
|
|
delete[] sort_indices; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Helper function. |
|
* |
|
* I computes the order in which to traverse the child nodes of a particular node. |
|
*/ |
|
void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) |
|
{ |
|
DistanceType* domain_distances = new DistanceType[branching_]; |
|
for (int i=0; i<branching_; ++i) { |
|
DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_); |
|
|
|
int j=0; |
|
while (domain_distances[j]<dist && j<i) j++; |
|
for (int k=i; k>j; --k) { |
|
domain_distances[k] = domain_distances[k-1]; |
|
sort_indices[k] = sort_indices[k-1]; |
|
} |
|
domain_distances[j] = dist; |
|
sort_indices[j] = i; |
|
} |
|
delete[] domain_distances; |
|
} |
|
|
|
/** |
|
* Method that computes the squared distance from the query point q |
|
* from inside region with center c to the border between this |
|
* region and the region with center p |
|
*/ |
|
DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) |
|
{ |
|
DistanceType sum = 0; |
|
DistanceType sum2 = 0; |
|
|
|
for (int i=0; i<veclen_; ++i) { |
|
DistanceType t = c[i]-p[i]; |
|
sum += t*(q[i]-(c[i]+p[i])/2); |
|
sum2 += t*t; |
|
} |
|
|
|
return sum*sum/sum2; |
|
} |
|
|
|
|
|
/** |
|
* Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize |
|
* the overall variance of the clustering. |
|
* Params: |
|
* root = root node |
|
* clusters = array with clusters centers (return value) |
|
* varianceValue = variance of the clustering (return value) |
|
* Returns: |
|
*/ |
|
int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue) |
|
{ |
|
int clusterCount = 1; |
|
clusters[0] = root; |
|
|
|
DistanceType meanVariance = root->variance*root->size; |
|
|
|
while (clusterCount<clusters_length) { |
|
DistanceType minVariance = (std::numeric_limits<DistanceType>::max)(); |
|
int splitIndex = -1; |
|
|
|
for (int i=0; i<clusterCount; ++i) { |
|
if (clusters[i]->childs != NULL) { |
|
|
|
DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; |
|
|
|
for (int j=0; j<branching_; ++j) { |
|
variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; |
|
} |
|
if (variance<minVariance) { |
|
minVariance = variance; |
|
splitIndex = i; |
|
} |
|
} |
|
} |
|
|
|
if (splitIndex==-1) break; |
|
if ( (branching_+clusterCount-1) > clusters_length) break; |
|
|
|
meanVariance = minVariance; |
|
|
|
// split node |
|
KMeansNodePtr toSplit = clusters[splitIndex]; |
|
clusters[splitIndex] = toSplit->childs[0]; |
|
for (int i=1; i<branching_; ++i) { |
|
clusters[clusterCount++] = toSplit->childs[i]; |
|
} |
|
} |
|
|
|
varianceValue = meanVariance/root->size; |
|
return clusterCount; |
|
} |
|
|
|
private: |
|
/** The branching factor used in the hierarchical k-means clustering */ |
|
int branching_; |
|
|
|
/** Maximum number of iterations to use when performing k-means clustering */ |
|
int iterations_; |
|
|
|
/** Algorithm for choosing the cluster centers */ |
|
flann_centers_init_t centers_init_; |
|
|
|
/** |
|
* Cluster border index. This is used in the tree search phase when determining |
|
* the closest cluster to explore next. A zero value takes into account only |
|
* the cluster centres, a value greater then zero also take into account the size |
|
* of the cluster. |
|
*/ |
|
float cb_index_; |
|
|
|
/** |
|
* The dataset used by this index |
|
*/ |
|
const Matrix<ElementType> dataset_; |
|
|
|
/** Index parameters */ |
|
IndexParams index_params_; |
|
|
|
/** |
|
* Number of features in the dataset. |
|
*/ |
|
size_t size_; |
|
|
|
/** |
|
* Length of each feature. |
|
*/ |
|
size_t veclen_; |
|
|
|
/** |
|
* The root node in the tree. |
|
*/ |
|
KMeansNodePtr root_; |
|
|
|
/** |
|
* Array of indices to vectors in the dataset. |
|
*/ |
|
int* indices_; |
|
|
|
/** |
|
* The distance |
|
*/ |
|
Distance distance_; |
|
|
|
/** |
|
* Pooled memory allocator. |
|
*/ |
|
PooledAllocator pool_; |
|
|
|
/** |
|
* Memory occupied by the index. |
|
*/ |
|
int memoryCounter_; |
|
}; |
|
|
|
} |
|
|
|
#endif //OPENCV_FLANN_KMEANS_INDEX_H_
|
|
|