mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1453 lines
50 KiB
1453 lines
50 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
const float EPS = 1.0e-4f; |
|
|
|
static void findCircle3pts(Point2f *pts, Point2f ¢er, float &radius) |
|
{ |
|
// two edges of the triangle v1, v2 |
|
Point2f v1 = pts[1] - pts[0]; |
|
Point2f v2 = pts[2] - pts[0]; |
|
|
|
// center is intersection of midperpendicular lines of the two edges v1, v2 |
|
// a1*x + b1*y = c1 where a1 = v1.x, b1 = v1.y |
|
// a2*x + b2*y = c2 where a2 = v2.x, b2 = v2.y |
|
Point2f midPoint1 = (pts[0] + pts[1]) / 2.0f; |
|
float c1 = midPoint1.x * v1.x + midPoint1.y * v1.y; |
|
Point2f midPoint2 = (pts[0] + pts[2]) / 2.0f; |
|
float c2 = midPoint2.x * v2.x + midPoint2.y * v2.y; |
|
float det = v1.x * v2.y - v1.y * v2.x; |
|
if (fabs(det) <= EPS) |
|
{ |
|
// v1 and v2 are colinear, so the longest distance between any 2 points |
|
// is the diameter of the minimum enclosing circle. |
|
float d1 = normL2Sqr<float>(pts[0] - pts[1]); |
|
float d2 = normL2Sqr<float>(pts[0] - pts[2]); |
|
float d3 = normL2Sqr<float>(pts[1] - pts[2]); |
|
radius = sqrt(std::max(d1, std::max(d2, d3))) * 0.5f + EPS; |
|
if (d1 >= d2 && d1 >= d3) |
|
{ |
|
center = (pts[0] + pts[1]) * 0.5f; |
|
} |
|
else if (d2 >= d1 && d2 >= d3) |
|
{ |
|
center = (pts[0] + pts[2]) * 0.5f; |
|
} |
|
else |
|
{ |
|
CV_DbgAssert(d3 >= d1 && d3 >= d2); |
|
center = (pts[1] + pts[2]) * 0.5f; |
|
} |
|
return; |
|
} |
|
float cx = (c1 * v2.y - c2 * v1.y) / det; |
|
float cy = (v1.x * c2 - v2.x * c1) / det; |
|
center.x = (float)cx; |
|
center.y = (float)cy; |
|
cx -= pts[0].x; |
|
cy -= pts[0].y; |
|
radius = (float)(std::sqrt(cx *cx + cy * cy)) + EPS; |
|
} |
|
|
|
template<typename PT> |
|
static void findThirdPoint(const PT *pts, int i, int j, Point2f ¢er, float &radius) |
|
{ |
|
center.x = (float)(pts[j].x + pts[i].x) / 2.0f; |
|
center.y = (float)(pts[j].y + pts[i].y) / 2.0f; |
|
float dx = (float)(pts[j].x - pts[i].x); |
|
float dy = (float)(pts[j].y - pts[i].y); |
|
radius = (float)norm(Point2f(dx, dy)) / 2.0f + EPS; |
|
|
|
for (int k = 0; k < j; ++k) |
|
{ |
|
dx = center.x - (float)pts[k].x; |
|
dy = center.y - (float)pts[k].y; |
|
if (norm(Point2f(dx, dy)) < radius) |
|
{ |
|
continue; |
|
} |
|
else |
|
{ |
|
Point2f ptsf[3]; |
|
ptsf[0] = (Point2f)pts[i]; |
|
ptsf[1] = (Point2f)pts[j]; |
|
ptsf[2] = (Point2f)pts[k]; |
|
Point2f new_center; float new_radius = 0; |
|
findCircle3pts(ptsf, new_center, new_radius); |
|
if (new_radius > 0) |
|
{ |
|
radius = new_radius; |
|
center = new_center; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template<typename PT> |
|
void findSecondPoint(const PT *pts, int i, Point2f ¢er, float &radius) |
|
{ |
|
center.x = (float)(pts[0].x + pts[i].x) / 2.0f; |
|
center.y = (float)(pts[0].y + pts[i].y) / 2.0f; |
|
float dx = (float)(pts[0].x - pts[i].x); |
|
float dy = (float)(pts[0].y - pts[i].y); |
|
radius = (float)norm(Point2f(dx, dy)) / 2.0f + EPS; |
|
|
|
for (int j = 1; j < i; ++j) |
|
{ |
|
dx = center.x - (float)pts[j].x; |
|
dy = center.y - (float)pts[j].y; |
|
if (norm(Point2f(dx, dy)) < radius) |
|
{ |
|
continue; |
|
} |
|
else |
|
{ |
|
Point2f new_center; float new_radius = 0; |
|
findThirdPoint(pts, i, j, new_center, new_radius); |
|
if (new_radius > 0) |
|
{ |
|
radius = new_radius; |
|
center = new_center; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template<typename PT> |
|
static void findMinEnclosingCircle(const PT *pts, int count, Point2f ¢er, float &radius) |
|
{ |
|
center.x = (float)(pts[0].x + pts[1].x) / 2.0f; |
|
center.y = (float)(pts[0].y + pts[1].y) / 2.0f; |
|
float dx = (float)(pts[0].x - pts[1].x); |
|
float dy = (float)(pts[0].y - pts[1].y); |
|
radius = (float)norm(Point2f(dx, dy)) / 2.0f + EPS; |
|
|
|
for (int i = 2; i < count; ++i) |
|
{ |
|
dx = (float)pts[i].x - center.x; |
|
dy = (float)pts[i].y - center.y; |
|
float d = (float)norm(Point2f(dx, dy)); |
|
if (d < radius) |
|
{ |
|
continue; |
|
} |
|
else |
|
{ |
|
Point2f new_center; float new_radius = 0; |
|
findSecondPoint(pts, i, new_center, new_radius); |
|
if (new_radius > 0) |
|
{ |
|
radius = new_radius; |
|
center = new_center; |
|
} |
|
} |
|
} |
|
} |
|
} // namespace cv |
|
|
|
// see Welzl, Emo. Smallest enclosing disks (balls and ellipsoids). Springer Berlin Heidelberg, 1991. |
|
void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radius ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat points = _points.getMat(); |
|
int count = points.checkVector(2); |
|
int depth = points.depth(); |
|
CV_Assert(count >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
_center.x = _center.y = 0.f; |
|
_radius = 0.f; |
|
|
|
if( count == 0 ) |
|
return; |
|
|
|
bool is_float = depth == CV_32F; |
|
const Point* ptsi = points.ptr<Point>(); |
|
const Point2f* ptsf = points.ptr<Point2f>(); |
|
|
|
switch (count) |
|
{ |
|
case 1: |
|
{ |
|
_center = (is_float) ? ptsf[0] : Point2f((float)ptsi[0].x, (float)ptsi[0].y); |
|
_radius = EPS; |
|
break; |
|
} |
|
case 2: |
|
{ |
|
Point2f p1 = (is_float) ? ptsf[0] : Point2f((float)ptsi[0].x, (float)ptsi[0].y); |
|
Point2f p2 = (is_float) ? ptsf[1] : Point2f((float)ptsi[1].x, (float)ptsi[1].y); |
|
_center.x = (p1.x + p2.x) / 2.0f; |
|
_center.y = (p1.y + p2.y) / 2.0f; |
|
_radius = (float)(norm(p1 - p2) / 2.0) + EPS; |
|
break; |
|
} |
|
default: |
|
{ |
|
Point2f center; |
|
float radius = 0.f; |
|
if (is_float) |
|
{ |
|
findMinEnclosingCircle<Point2f>(ptsf, count, center, radius); |
|
#if 0 |
|
for (size_t m = 0; m < count; ++m) |
|
{ |
|
float d = (float)norm(ptsf[m] - center); |
|
if (d > radius) |
|
{ |
|
printf("error!\n"); |
|
} |
|
} |
|
#endif |
|
} |
|
else |
|
{ |
|
findMinEnclosingCircle<Point>(ptsi, count, center, radius); |
|
#if 0 |
|
for (size_t m = 0; m < count; ++m) |
|
{ |
|
double dx = ptsi[m].x - center.x; |
|
double dy = ptsi[m].y - center.y; |
|
double d = std::sqrt(dx * dx + dy * dy); |
|
if (d > radius) |
|
{ |
|
printf("error!\n"); |
|
} |
|
} |
|
#endif |
|
} |
|
_center = center; |
|
_radius = radius; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
// calculates length of a curve (e.g. contour perimeter) |
|
double cv::arcLength( InputArray _curve, bool is_closed ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat curve = _curve.getMat(); |
|
int count = curve.checkVector(2); |
|
int depth = curve.depth(); |
|
CV_Assert( count >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
double perimeter = 0; |
|
|
|
int i; |
|
|
|
if( count <= 1 ) |
|
return 0.; |
|
|
|
bool is_float = depth == CV_32F; |
|
int last = is_closed ? count-1 : 0; |
|
const Point* pti = curve.ptr<Point>(); |
|
const Point2f* ptf = curve.ptr<Point2f>(); |
|
|
|
Point2f prev = is_float ? ptf[last] : Point2f((float)pti[last].x,(float)pti[last].y); |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
Point2f p = is_float ? ptf[i] : Point2f((float)pti[i].x,(float)pti[i].y); |
|
float dx = p.x - prev.x, dy = p.y - prev.y; |
|
perimeter += std::sqrt(dx*dx + dy*dy); |
|
|
|
prev = p; |
|
} |
|
|
|
return perimeter; |
|
} |
|
|
|
// area of a whole sequence |
|
double cv::contourArea( InputArray _contour, bool oriented ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat contour = _contour.getMat(); |
|
int npoints = contour.checkVector(2); |
|
int depth = contour.depth(); |
|
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
if( npoints == 0 ) |
|
return 0.; |
|
|
|
double a00 = 0; |
|
bool is_float = depth == CV_32F; |
|
const Point* ptsi = contour.ptr<Point>(); |
|
const Point2f* ptsf = contour.ptr<Point2f>(); |
|
Point2f prev = is_float ? ptsf[npoints-1] : Point2f((float)ptsi[npoints-1].x, (float)ptsi[npoints-1].y); |
|
|
|
for( int i = 0; i < npoints; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
a00 += (double)prev.x * p.y - (double)prev.y * p.x; |
|
prev = p; |
|
} |
|
|
|
a00 *= 0.5; |
|
if( !oriented ) |
|
a00 = fabs(a00); |
|
|
|
return a00; |
|
} |
|
|
|
|
|
cv::RotatedRect cv::fitEllipse( InputArray _points ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat points = _points.getMat(); |
|
int i, n = points.checkVector(2); |
|
int depth = points.depth(); |
|
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
RotatedRect box; |
|
|
|
if( n < 5 ) |
|
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" ); |
|
|
|
// New fitellipse algorithm, contributed by Dr. Daniel Weiss |
|
Point2f c(0,0); |
|
double gfp[5] = {0}, rp[5] = {0}, t; |
|
const double min_eps = 1e-8; |
|
bool is_float = depth == CV_32F; |
|
const Point* ptsi = points.ptr<Point>(); |
|
const Point2f* ptsf = points.ptr<Point2f>(); |
|
|
|
AutoBuffer<double> _Ad(n*5), _bd(n); |
|
double *Ad = _Ad.data(), *bd = _bd.data(); |
|
|
|
// first fit for parameters A - E |
|
Mat A( n, 5, CV_64F, Ad ); |
|
Mat b( n, 1, CV_64F, bd ); |
|
Mat x( 5, 1, CV_64F, gfp ); |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
c += p; |
|
} |
|
c.x /= n; |
|
c.y /= n; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
p -= c; |
|
|
|
bd[i] = 10000.0; // 1.0? |
|
Ad[i*5] = -(double)p.x * p.x; // A - C signs inverted as proposed by APP |
|
Ad[i*5 + 1] = -(double)p.y * p.y; |
|
Ad[i*5 + 2] = -(double)p.x * p.y; |
|
Ad[i*5 + 3] = p.x; |
|
Ad[i*5 + 4] = p.y; |
|
} |
|
|
|
solve(A, b, x, DECOMP_SVD); |
|
|
|
// now use general-form parameters A - E to find the ellipse center: |
|
// differentiate general form wrt x/y to get two equations for cx and cy |
|
A = Mat( 2, 2, CV_64F, Ad ); |
|
b = Mat( 2, 1, CV_64F, bd ); |
|
x = Mat( 2, 1, CV_64F, rp ); |
|
Ad[0] = 2 * gfp[0]; |
|
Ad[1] = Ad[2] = gfp[2]; |
|
Ad[3] = 2 * gfp[1]; |
|
bd[0] = gfp[3]; |
|
bd[1] = gfp[4]; |
|
solve( A, b, x, DECOMP_SVD ); |
|
|
|
// re-fit for parameters A - C with those center coordinates |
|
A = Mat( n, 3, CV_64F, Ad ); |
|
b = Mat( n, 1, CV_64F, bd ); |
|
x = Mat( 3, 1, CV_64F, gfp ); |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
p -= c; |
|
bd[i] = 1.0; |
|
Ad[i * 3] = (p.x - rp[0]) * (p.x - rp[0]); |
|
Ad[i * 3 + 1] = (p.y - rp[1]) * (p.y - rp[1]); |
|
Ad[i * 3 + 2] = (p.x - rp[0]) * (p.y - rp[1]); |
|
} |
|
solve(A, b, x, DECOMP_SVD); |
|
|
|
// store angle and radii |
|
rp[4] = -0.5 * atan2(gfp[2], gfp[1] - gfp[0]); // convert from APP angle usage |
|
if( fabs(gfp[2]) > min_eps ) |
|
t = gfp[2]/sin(-2.0 * rp[4]); |
|
else // ellipse is rotated by an integer multiple of pi/2 |
|
t = gfp[1] - gfp[0]; |
|
rp[2] = fabs(gfp[0] + gfp[1] - t); |
|
if( rp[2] > min_eps ) |
|
rp[2] = std::sqrt(2.0 / rp[2]); |
|
rp[3] = fabs(gfp[0] + gfp[1] + t); |
|
if( rp[3] > min_eps ) |
|
rp[3] = std::sqrt(2.0 / rp[3]); |
|
|
|
box.center.x = (float)rp[0] + c.x; |
|
box.center.y = (float)rp[1] + c.y; |
|
box.size.width = (float)(rp[2]*2); |
|
box.size.height = (float)(rp[3]*2); |
|
if( box.size.width > box.size.height ) |
|
{ |
|
float tmp; |
|
CV_SWAP( box.size.width, box.size.height, tmp ); |
|
box.angle = (float)(90 + rp[4]*180/CV_PI); |
|
} |
|
if( box.angle < -180 ) |
|
box.angle += 360; |
|
if( box.angle > 360 ) |
|
box.angle -= 360; |
|
|
|
return box; |
|
} |
|
|
|
cv::RotatedRect cv::fitEllipseAMS( InputArray _points ) |
|
{ |
|
Mat points = _points.getMat(); |
|
int i, n = points.checkVector(2); |
|
int depth = points.depth(); |
|
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
RotatedRect box; |
|
|
|
if( n < 5 ) |
|
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" ); |
|
|
|
Point2f c(0,0); |
|
|
|
bool is_float = depth == CV_32F; |
|
const Point* ptsi = points.ptr<Point>(); |
|
const Point2f* ptsf = points.ptr<Point2f>(); |
|
|
|
Mat A( n, 6, CV_64F); |
|
Matx<double, 6, 6> DM; |
|
Matx<double, 5, 5> M; |
|
Matx<double, 5, 1> pVec; |
|
Matx<double, 6, 1> coeffs; |
|
|
|
double x0, y0, a, b, theta; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
c += p; |
|
} |
|
c.x /= (float)n; |
|
c.y /= (float)n; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
p -= c; |
|
|
|
A.at<double>(i,0) = (double)(p.x)*(p.x); |
|
A.at<double>(i,1) = (double)(p.x)*(p.y); |
|
A.at<double>(i,2) = (double)(p.y)*(p.y); |
|
A.at<double>(i,3) = (double)p.x; |
|
A.at<double>(i,4) = (double)p.y; |
|
A.at<double>(i,5) = 1.0; |
|
} |
|
cv::mulTransposed( A, DM, true, noArray(), 1.0, -1 ); |
|
DM *= (1.0/n); |
|
double dnm = ( DM(2,5)*(DM(0,5) + DM(2,5)) - (DM(1,5)*DM(1,5)) ); |
|
double ddm = (4.*(DM(0,5) + DM(2,5))*( (DM(0,5)*DM(2,5)) - (DM(1,5)*DM(1,5)))); |
|
double ddmm = (2.*(DM(0,5) + DM(2,5))*( (DM(0,5)*DM(2,5)) - (DM(1,5)*DM(1,5)))); |
|
|
|
M(0,0)=((-DM(0,0) + DM(0,2) + DM(0,5)*DM(0,5))*(DM(1,5)*DM(1,5)) + (-2*DM(0,1)*DM(1,5) + DM(0,5)*(DM(0,0) \ |
|
- (DM(0,5)*DM(0,5)) + (DM(1,5)*DM(1,5))))*DM(2,5) + (DM(0,0) - (DM(0,5)*DM(0,5)))*(DM(2,5)*DM(2,5))) / ddm; |
|
M(0,1)=((DM(1,5)*DM(1,5))*(-DM(0,1) + DM(1,2) + DM(0,5)*DM(1,5)) + (DM(0,1)*DM(0,5) - ((DM(0,5)*DM(0,5)) + 2*DM(1,1))*DM(1,5) + \ |
|
(DM(1,5)*DM(1,5)*DM(1,5)))*DM(2,5) + (DM(0,1) - DM(0,5)*DM(1,5))*(DM(2,5)*DM(2,5))) / ddm; |
|
M(0,2)=(-2*DM(1,2)*DM(1,5)*DM(2,5) - DM(0,5)*(DM(2,5)*DM(2,5))*(DM(0,5) + DM(2,5)) + DM(0,2)*dnm + \ |
|
(DM(1,5)*DM(1,5))*(DM(2,2) + DM(2,5)*(DM(0,5) + DM(2,5))))/ddm; |
|
M(0,3)=(DM(1,5)*(DM(1,5)*DM(2,3) - 2*DM(1,3)*DM(2,5)) + DM(0,3)*dnm) / ddm; |
|
M(0,4)=(DM(1,5)*(DM(1,5)*DM(2,4) - 2*DM(1,4)*DM(2,5)) + DM(0,4)*dnm) / ddm; |
|
M(1,0)=(-(DM(0,2)*DM(0,5)*DM(1,5)) + (2*DM(0,1)*DM(0,5) - DM(0,0)*DM(1,5))*DM(2,5))/ddmm; |
|
M(1,1)=(-(DM(0,1)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,2)*DM(1,5)) + 2*DM(1,1)*DM(2,5)))/ddmm; |
|
M(1,2)=(-(DM(0,2)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,2)) + 2*DM(1,2)*DM(2,5)))/ddmm; |
|
M(1,3)=(-(DM(0,3)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,3)) + 2*DM(1,3)*DM(2,5)))/ddmm; |
|
M(1,4)=(-(DM(0,4)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,4)) + 2*DM(1,4)*DM(2,5)))/ddmm; |
|
M(2,0)=(-2*DM(0,1)*DM(0,5)*DM(1,5) + (DM(0,0) + (DM(0,5)*DM(0,5)))*(DM(1,5)*DM(1,5)) + DM(0,5)*(-(DM(0,5)*DM(0,5)) \ |
|
+ (DM(1,5)*DM(1,5)))*DM(2,5) - (DM(0,5)*DM(0,5))*(DM(2,5)*DM(2,5)) + DM(0,2)*(-(DM(1,5)*DM(1,5)) + DM(0,5)*(DM(0,5) + DM(2,5)))) / ddm; |
|
M(2,1)=((DM(0,5)*DM(0,5))*(DM(1,2) - DM(1,5)*DM(2,5)) + (DM(1,5)*DM(1,5))*(DM(0,1) - DM(1,2) + DM(1,5)*DM(2,5)) \ |
|
+ DM(0,5)*(DM(1,2)*DM(2,5) + DM(1,5)*(-2*DM(1,1) + (DM(1,5)*DM(1,5)) - (DM(2,5)*DM(2,5))))) / ddm; |
|
M(2,2)=((DM(0,5)*DM(0,5))*(DM(2,2) - (DM(2,5)*DM(2,5))) + (DM(1,5)*DM(1,5))*(DM(0,2) - DM(2,2) + (DM(2,5)*DM(2,5))) + \ |
|
DM(0,5)*(-2*DM(1,2)*DM(1,5) + DM(2,5)*((DM(1,5)*DM(1,5)) + DM(2,2) - (DM(2,5)*DM(2,5))))) / ddm; |
|
M(2,3)=((DM(1,5)*DM(1,5))*(DM(0,3) - DM(2,3)) + (DM(0,5)*DM(0,5))*DM(2,3) + DM(0,5)*(-2*DM(1,3)*DM(1,5) + DM(2,3)*DM(2,5))) / ddm; |
|
M(2,4)=((DM(1,5)*DM(1,5))*(DM(0,4) - DM(2,4)) + (DM(0,5)*DM(0,5))*DM(2,4) + DM(0,5)*(-2*DM(1,4)*DM(1,5) + DM(2,4)*DM(2,5))) / ddm; |
|
M(3,0)=DM(0,3); |
|
M(3,1)=DM(1,3); |
|
M(3,2)=DM(2,3); |
|
M(3,3)=DM(3,3); |
|
M(3,4)=DM(3,4); |
|
M(4,0)=DM(0,4); |
|
M(4,1)=DM(1,4); |
|
M(4,2)=DM(2,4); |
|
M(4,3)=DM(3,4); |
|
M(4,4)=DM(4,4); |
|
|
|
if (fabs(cv::determinant(M)) > 1.0e-10) { |
|
Mat eVal, eVec; |
|
eigenNonSymmetric(M, eVal, eVec); |
|
|
|
// Select the eigen vector {a,b,c,d,e} which has the lowest eigenvalue |
|
int minpos = 0; |
|
double normi, normEVali, normMinpos, normEValMinpos; |
|
normMinpos = sqrt(eVec.at<double>(minpos,0)*eVec.at<double>(minpos,0) + eVec.at<double>(minpos,1)*eVec.at<double>(minpos,1) + \ |
|
eVec.at<double>(minpos,2)*eVec.at<double>(minpos,2) + eVec.at<double>(minpos,3)*eVec.at<double>(minpos,3) + \ |
|
eVec.at<double>(minpos,4)*eVec.at<double>(minpos,4) ); |
|
normEValMinpos = eVal.at<double>(minpos,0) * normMinpos; |
|
for (i=1; i<5; i++) { |
|
normi = sqrt(eVec.at<double>(i,0)*eVec.at<double>(i,0) + eVec.at<double>(i,1)*eVec.at<double>(i,1) + \ |
|
eVec.at<double>(i,2)*eVec.at<double>(i,2) + eVec.at<double>(i,3)*eVec.at<double>(i,3) + \ |
|
eVec.at<double>(i,4)*eVec.at<double>(i,4) ); |
|
normEVali = eVal.at<double>(i,0) * normi; |
|
if (normEVali < normEValMinpos) { |
|
minpos = i; |
|
normMinpos=normi; |
|
normEValMinpos=normEVali; |
|
} |
|
}; |
|
|
|
pVec(0) =eVec.at<double>(minpos,0) / normMinpos; |
|
pVec(1) =eVec.at<double>(minpos,1) / normMinpos; |
|
pVec(2) =eVec.at<double>(minpos,2) / normMinpos; |
|
pVec(3) =eVec.at<double>(minpos,3) / normMinpos; |
|
pVec(4) =eVec.at<double>(minpos,4) / normMinpos; |
|
|
|
coeffs(0) =pVec(0) ; |
|
coeffs(1) =pVec(1) ; |
|
coeffs(2) =pVec(2) ; |
|
coeffs(3) =pVec(3) ; |
|
coeffs(4) =pVec(4) ; |
|
coeffs(5) =-pVec(0) *DM(0,5)-pVec(1) *DM(1,5)-coeffs(2) *DM(2,5); |
|
|
|
// Check that an elliptical solution has been found. AMS sometimes produces Parabolic solutions. |
|
bool is_ellipse = (coeffs(0) < 0 && \ |
|
coeffs(2) < (coeffs(1) *coeffs(1) )/(4.*coeffs(0) ) && \ |
|
coeffs(5) > (-(coeffs(2) *(coeffs(3) *coeffs(3) )) + coeffs(1) *coeffs(3) *coeffs(4) - coeffs(0) *(coeffs(4) *coeffs(4) )) / \ |
|
((coeffs(1) *coeffs(1) ) - 4*coeffs(0) *coeffs(2) )) || \ |
|
(coeffs(0) > 0 && \ |
|
coeffs(2) > (coeffs(1) *coeffs(1) )/(4.*coeffs(0) ) && \ |
|
coeffs(5) < (-(coeffs(2) *(coeffs(3) *coeffs(3) )) + coeffs(1) *coeffs(3) *coeffs(4) - coeffs(0) *(coeffs(4) *coeffs(4) )) / \ |
|
( (coeffs(1) *coeffs(1) ) - 4*coeffs(0) *coeffs(2) )); |
|
if (is_ellipse) { |
|
double u1 = pVec(2) *pVec(3) *pVec(3) - pVec(1) *pVec(3) *pVec(4) + pVec(0) *pVec(4) *pVec(4) + pVec(1) *pVec(1) *coeffs(5) ; |
|
double u2 = pVec(0) *pVec(2) *coeffs(5) ; |
|
double l1 = sqrt(pVec(1) *pVec(1) + (pVec(0) - pVec(2) )*(pVec(0) - pVec(2) )); |
|
double l2 = pVec(0) + pVec(2) ; |
|
double l3 = pVec(1) *pVec(1) - 4.0*pVec(0) *pVec(2) ; |
|
double p1 = 2.0*pVec(2) *pVec(3) - pVec(1) *pVec(4) ; |
|
double p2 = 2.0*pVec(0) *pVec(4) -(pVec(1) *pVec(3) ); |
|
|
|
x0 = p1/l3 + c.x; |
|
y0 = p2/l3 + c.y; |
|
a = std::sqrt(2.)*sqrt((u1 - 4.0*u2)/((l1 - l2)*l3)); |
|
b = std::sqrt(2.)*sqrt(-1.0*((u1 - 4.0*u2)/((l1 + l2)*l3))); |
|
if (pVec(1) == 0) { |
|
if (pVec(0) < pVec(2) ) { |
|
theta = 0; |
|
} else { |
|
theta = CV_PI/2.; |
|
} |
|
} else { |
|
theta = CV_PI/2. + 0.5*std::atan2(pVec(1) , (pVec(0) - pVec(2) )); |
|
} |
|
|
|
box.center.x = (float)x0; // +c.x; |
|
box.center.y = (float)y0; // +c.y; |
|
box.size.width = (float)(2.0*a); |
|
box.size.height = (float)(2.0*b); |
|
if( box.size.width > box.size.height ) |
|
{ |
|
float tmp; |
|
CV_SWAP( box.size.width, box.size.height, tmp ); |
|
box.angle = (float)(90 + theta*180/CV_PI); |
|
} else { |
|
box.angle = (float)(fmod(theta*180/CV_PI,180.0)); |
|
}; |
|
|
|
|
|
} else { |
|
box = cv::fitEllipseDirect( points ); |
|
} |
|
} else { |
|
box = cv::fitEllipse( points ); |
|
} |
|
|
|
return box; |
|
} |
|
|
|
cv::RotatedRect cv::fitEllipseDirect( InputArray _points ) |
|
{ |
|
Mat points = _points.getMat(); |
|
int i, n = points.checkVector(2); |
|
int depth = points.depth(); |
|
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
RotatedRect box; |
|
|
|
if( n < 5 ) |
|
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" ); |
|
|
|
Point2f c(0,0); |
|
|
|
bool is_float = (depth == CV_32F); |
|
const Point* ptsi = points.ptr<Point>(); |
|
const Point2f* ptsf = points.ptr<Point2f>(); |
|
|
|
Mat A( n, 6, CV_64F); |
|
Matx<double, 6, 6> DM; |
|
Matx33d M, TM, Q; |
|
Matx<double, 3, 1> pVec; |
|
|
|
double x0, y0, a, b, theta, Ts; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
c += p; |
|
} |
|
c.x /= (float)n; |
|
c.y /= (float)n; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y); |
|
p -= c; |
|
|
|
A.at<double>(i,0) = (double)(p.x)*(p.x); |
|
A.at<double>(i,1) = (double)(p.x)*(p.y); |
|
A.at<double>(i,2) = (double)(p.y)*(p.y); |
|
A.at<double>(i,3) = (double)p.x; |
|
A.at<double>(i,4) = (double)p.y; |
|
A.at<double>(i,5) = 1.0; |
|
} |
|
cv::mulTransposed( A, DM, true, noArray(), 1.0, -1 ); |
|
DM *= (1.0/n); |
|
|
|
TM(0,0) = DM(0,5)*DM(3,5)*DM(4,4) - DM(0,5)*DM(3,4)*DM(4,5) - DM(0,4)*DM(3,5)*DM(5,4) + \ |
|
DM(0,3)*DM(4,5)*DM(5,4) + DM(0,4)*DM(3,4)*DM(5,5) - DM(0,3)*DM(4,4)*DM(5,5); |
|
TM(0,1) = DM(1,5)*DM(3,5)*DM(4,4) - DM(1,5)*DM(3,4)*DM(4,5) - DM(1,4)*DM(3,5)*DM(5,4) + \ |
|
DM(1,3)*DM(4,5)*DM(5,4) + DM(1,4)*DM(3,4)*DM(5,5) - DM(1,3)*DM(4,4)*DM(5,5); |
|
TM(0,2) = DM(2,5)*DM(3,5)*DM(4,4) - DM(2,5)*DM(3,4)*DM(4,5) - DM(2,4)*DM(3,5)*DM(5,4) + \ |
|
DM(2,3)*DM(4,5)*DM(5,4) + DM(2,4)*DM(3,4)*DM(5,5) - DM(2,3)*DM(4,4)*DM(5,5); |
|
TM(1,0) = DM(0,5)*DM(3,3)*DM(4,5) - DM(0,5)*DM(3,5)*DM(4,3) + DM(0,4)*DM(3,5)*DM(5,3) - \ |
|
DM(0,3)*DM(4,5)*DM(5,3) - DM(0,4)*DM(3,3)*DM(5,5) + DM(0,3)*DM(4,3)*DM(5,5); |
|
TM(1,1) = DM(1,5)*DM(3,3)*DM(4,5) - DM(1,5)*DM(3,5)*DM(4,3) + DM(1,4)*DM(3,5)*DM(5,3) - \ |
|
DM(1,3)*DM(4,5)*DM(5,3) - DM(1,4)*DM(3,3)*DM(5,5) + DM(1,3)*DM(4,3)*DM(5,5); |
|
TM(1,2) = DM(2,5)*DM(3,3)*DM(4,5) - DM(2,5)*DM(3,5)*DM(4,3) + DM(2,4)*DM(3,5)*DM(5,3) - \ |
|
DM(2,3)*DM(4,5)*DM(5,3) - DM(2,4)*DM(3,3)*DM(5,5) + DM(2,3)*DM(4,3)*DM(5,5); |
|
TM(2,0) = DM(0,5)*DM(3,4)*DM(4,3) - DM(0,5)*DM(3,3)*DM(4,4) - DM(0,4)*DM(3,4)*DM(5,3) + \ |
|
DM(0,3)*DM(4,4)*DM(5,3) + DM(0,4)*DM(3,3)*DM(5,4) - DM(0,3)*DM(4,3)*DM(5,4); |
|
TM(2,1) = DM(1,5)*DM(3,4)*DM(4,3) - DM(1,5)*DM(3,3)*DM(4,4) - DM(1,4)*DM(3,4)*DM(5,3) + \ |
|
DM(1,3)*DM(4,4)*DM(5,3) + DM(1,4)*DM(3,3)*DM(5,4) - DM(1,3)*DM(4,3)*DM(5,4); |
|
TM(2,2) = DM(2,5)*DM(3,4)*DM(4,3) - DM(2,5)*DM(3,3)*DM(4,4) - DM(2,4)*DM(3,4)*DM(5,3) + \ |
|
DM(2,3)*DM(4,4)*DM(5,3) + DM(2,4)*DM(3,3)*DM(5,4) - DM(2,3)*DM(4,3)*DM(5,4); |
|
|
|
Ts=(-(DM(3,5)*DM(4,4)*DM(5,3)) + DM(3,4)*DM(4,5)*DM(5,3) + DM(3,5)*DM(4,3)*DM(5,4) - \ |
|
DM(3,3)*DM(4,5)*DM(5,4) - DM(3,4)*DM(4,3)*DM(5,5) + DM(3,3)*DM(4,4)*DM(5,5)); |
|
|
|
M(0,0) = (DM(2,0) + (DM(2,3)*TM(0,0) + DM(2,4)*TM(1,0) + DM(2,5)*TM(2,0))/Ts)/2.; |
|
M(0,1) = (DM(2,1) + (DM(2,3)*TM(0,1) + DM(2,4)*TM(1,1) + DM(2,5)*TM(2,1))/Ts)/2.; |
|
M(0,2) = (DM(2,2) + (DM(2,3)*TM(0,2) + DM(2,4)*TM(1,2) + DM(2,5)*TM(2,2))/Ts)/2.; |
|
M(1,0) = -DM(1,0) - (DM(1,3)*TM(0,0) + DM(1,4)*TM(1,0) + DM(1,5)*TM(2,0))/Ts; |
|
M(1,1) = -DM(1,1) - (DM(1,3)*TM(0,1) + DM(1,4)*TM(1,1) + DM(1,5)*TM(2,1))/Ts; |
|
M(1,2) = -DM(1,2) - (DM(1,3)*TM(0,2) + DM(1,4)*TM(1,2) + DM(1,5)*TM(2,2))/Ts; |
|
M(2,0) = (DM(0,0) + (DM(0,3)*TM(0,0) + DM(0,4)*TM(1,0) + DM(0,5)*TM(2,0))/Ts)/2.; |
|
M(2,1) = (DM(0,1) + (DM(0,3)*TM(0,1) + DM(0,4)*TM(1,1) + DM(0,5)*TM(2,1))/Ts)/2.; |
|
M(2,2) = (DM(0,2) + (DM(0,3)*TM(0,2) + DM(0,4)*TM(1,2) + DM(0,5)*TM(2,2))/Ts)/2.; |
|
|
|
if (fabs(cv::determinant(M)) > 1.0e-10) { |
|
Mat eVal, eVec; |
|
eigenNonSymmetric(M, eVal, eVec); |
|
|
|
// Select the eigen vector {a,b,c} which satisfies 4ac-b^2 > 0 |
|
double cond[3]; |
|
cond[0]=(4.0 * eVec.at<double>(0,0) * eVec.at<double>(0,2) - eVec.at<double>(0,1) * eVec.at<double>(0,1)); |
|
cond[1]=(4.0 * eVec.at<double>(1,0) * eVec.at<double>(1,2) - eVec.at<double>(1,1) * eVec.at<double>(1,1)); |
|
cond[2]=(4.0 * eVec.at<double>(2,0) * eVec.at<double>(2,2) - eVec.at<double>(2,1) * eVec.at<double>(2,1)); |
|
if (cond[0]<cond[1]) { |
|
i = (cond[1]<cond[2]) ? 2 : 1; |
|
} else { |
|
i = (cond[0]<cond[2]) ? 2 : 0; |
|
} |
|
double norm = std::sqrt(eVec.at<double>(i,0)*eVec.at<double>(i,0) + eVec.at<double>(i,1)*eVec.at<double>(i,1) + eVec.at<double>(i,2)*eVec.at<double>(i,2)); |
|
if (((eVec.at<double>(i,0)<0.0 ? -1 : 1) * (eVec.at<double>(i,1)<0.0 ? -1 : 1) * (eVec.at<double>(i,2)<0.0 ? -1 : 1)) <= 0.0) { |
|
norm=-1.0*norm; |
|
} |
|
pVec(0) =eVec.at<double>(i,0)/norm; pVec(1) =eVec.at<double>(i,1)/norm;pVec(2) =eVec.at<double>(i,2)/norm; |
|
|
|
// Q = (TM . pVec)/Ts; |
|
Q(0,0) = (TM(0,0)*pVec(0) +TM(0,1)*pVec(1) +TM(0,2)*pVec(2) )/Ts; |
|
Q(0,1) = (TM(1,0)*pVec(0) +TM(1,1)*pVec(1) +TM(1,2)*pVec(2) )/Ts; |
|
Q(0,2) = (TM(2,0)*pVec(0) +TM(2,1)*pVec(1) +TM(2,2)*pVec(2) )/Ts; |
|
|
|
// We compute the ellipse properties in the shifted coordinates as doing so improves the numerical accuracy. |
|
|
|
double u1 = pVec(2)*Q(0,0)*Q(0,0) - pVec(1)*Q(0,0)*Q(0,1) + pVec(0)*Q(0,1)*Q(0,1) + pVec(1)*pVec(1)*Q(0,2); |
|
double u2 = pVec(0)*pVec(2)*Q(0,2); |
|
double l1 = sqrt(pVec(1)*pVec(1) + (pVec(0) - pVec(2))*(pVec(0) - pVec(2))); |
|
double l2 = pVec(0) + pVec(2) ; |
|
double l3 = pVec(1)*pVec(1) - 4*pVec(0)*pVec(2) ; |
|
double p1 = 2*pVec(2)*Q(0,0) - pVec(1)*Q(0,1); |
|
double p2 = 2*pVec(0)*Q(0,1) - pVec(1)*Q(0,0); |
|
|
|
x0 = p1/l3 + c.x; |
|
y0 = p2/l3 + c.y; |
|
a = sqrt(2.)*sqrt((u1 - 4.0*u2)/((l1 - l2)*l3)); |
|
b = sqrt(2.)*sqrt(-1.0*((u1 - 4.0*u2)/((l1 + l2)*l3))); |
|
if (pVec(1) == 0) { |
|
if (pVec(0) < pVec(2) ) { |
|
theta = 0; |
|
} else { |
|
theta = CV_PI/2.; |
|
} |
|
} else { |
|
theta = CV_PI/2. + 0.5*std::atan2(pVec(1) , (pVec(0) - pVec(2) )); |
|
} |
|
|
|
box.center.x = (float)x0; |
|
box.center.y = (float)y0; |
|
box.size.width = (float)(2.0*a); |
|
box.size.height = (float)(2.0*b); |
|
if( box.size.width > box.size.height ) |
|
{ |
|
float tmp; |
|
CV_SWAP( box.size.width, box.size.height, tmp ); |
|
box.angle = (float)(fmod((90 + theta*180/CV_PI),180.0)) ; |
|
} else { |
|
box.angle = (float)(fmod(theta*180/CV_PI,180.0)); |
|
}; |
|
} else { |
|
box = cv::fitEllipse( points ); |
|
} |
|
return box; |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
// Calculates bounding rectangle of a point set or retrieves already calculated |
|
static Rect pointSetBoundingRect( const Mat& points ) |
|
{ |
|
int npoints = points.checkVector(2); |
|
int depth = points.depth(); |
|
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S)); |
|
|
|
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i; |
|
bool is_float = depth == CV_32F; |
|
|
|
if( npoints == 0 ) |
|
return Rect(); |
|
|
|
#if CV_SIMD |
|
const int64_t* pts = points.ptr<int64_t>(); |
|
|
|
if( !is_float ) |
|
{ |
|
v_int32 minval, maxval; |
|
minval = maxval = v_reinterpret_as_s32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y |
|
for( i = 1; i <= npoints - v_int32::nlanes/2; i+= v_int32::nlanes/2 ) |
|
{ |
|
v_int32 ptXY2 = v_reinterpret_as_s32(vx_load(pts + i)); |
|
minval = v_min(ptXY2, minval); |
|
maxval = v_max(ptXY2, maxval); |
|
} |
|
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval)))); |
|
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval)))); |
|
if( i <= npoints - v_int32::nlanes/4 ) |
|
{ |
|
v_int32 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i)))); |
|
minval = v_min(ptXY, minval); |
|
maxval = v_max(ptXY, maxval); |
|
i += v_int64::nlanes/2; |
|
} |
|
for(int j = 16; j < CV_SIMD_WIDTH; j*=2) |
|
{ |
|
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval)))); |
|
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval)))); |
|
} |
|
xmin = minval.get0(); |
|
xmax = maxval.get0(); |
|
ymin = v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))).get0(); |
|
ymax = v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))).get0(); |
|
#if CV_SIMD_WIDTH > 16 |
|
if( i < npoints ) |
|
{ |
|
v_int32x4 minval2, maxval2; |
|
minval2 = maxval2 = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i)))); |
|
for( i++; i < npoints; i++ ) |
|
{ |
|
v_int32x4 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i)))); |
|
minval2 = v_min(ptXY, minval2); |
|
maxval2 = v_max(ptXY, maxval2); |
|
} |
|
xmin = min(xmin, minval2.get0()); |
|
xmax = max(xmax, maxval2.get0()); |
|
ymin = min(ymin, v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval2))).get0()); |
|
ymax = max(ymax, v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval2))).get0()); |
|
} |
|
#endif |
|
} |
|
else |
|
{ |
|
v_float32 minval, maxval; |
|
minval = maxval = v_reinterpret_as_f32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y |
|
for( i = 1; i <= npoints - v_float32::nlanes/2; i+= v_float32::nlanes/2 ) |
|
{ |
|
v_float32 ptXY2 = v_reinterpret_as_f32(vx_load(pts + i)); |
|
minval = v_min(ptXY2, minval); |
|
maxval = v_max(ptXY2, maxval); |
|
} |
|
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval)))); |
|
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval)))); |
|
if( i <= npoints - v_float32::nlanes/4 ) |
|
{ |
|
v_float32 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i)))); |
|
minval = v_min(ptXY, minval); |
|
maxval = v_max(ptXY, maxval); |
|
i += v_float32::nlanes/4; |
|
} |
|
for(int j = 16; j < CV_SIMD_WIDTH; j*=2) |
|
{ |
|
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval)))); |
|
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval)))); |
|
} |
|
xmin = cvFloor(minval.get0()); |
|
xmax = cvFloor(maxval.get0()); |
|
ymin = cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))).get0()); |
|
ymax = cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))).get0()); |
|
#if CV_SIMD_WIDTH > 16 |
|
if( i < npoints ) |
|
{ |
|
v_float32x4 minval2, maxval2; |
|
minval2 = maxval2 = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i)))); |
|
for( i++; i < npoints; i++ ) |
|
{ |
|
v_float32x4 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i)))); |
|
minval2 = v_min(ptXY, minval2); |
|
maxval2 = v_max(ptXY, maxval2); |
|
} |
|
xmin = min(xmin, cvFloor(minval2.get0())); |
|
xmax = max(xmax, cvFloor(maxval2.get0())); |
|
ymin = min(ymin, cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval2))).get0())); |
|
ymax = max(ymax, cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval2))).get0())); |
|
} |
|
#endif |
|
} |
|
#else |
|
const Point* pts = points.ptr<Point>(); |
|
Point pt = pts[0]; |
|
|
|
if( !is_float ) |
|
{ |
|
xmin = xmax = pt.x; |
|
ymin = ymax = pt.y; |
|
|
|
for( i = 1; i < npoints; i++ ) |
|
{ |
|
pt = pts[i]; |
|
|
|
if( xmin > pt.x ) |
|
xmin = pt.x; |
|
|
|
if( xmax < pt.x ) |
|
xmax = pt.x; |
|
|
|
if( ymin > pt.y ) |
|
ymin = pt.y; |
|
|
|
if( ymax < pt.y ) |
|
ymax = pt.y; |
|
} |
|
} |
|
else |
|
{ |
|
Cv32suf v; |
|
// init values |
|
xmin = xmax = CV_TOGGLE_FLT(pt.x); |
|
ymin = ymax = CV_TOGGLE_FLT(pt.y); |
|
|
|
for( i = 1; i < npoints; i++ ) |
|
{ |
|
pt = pts[i]; |
|
pt.x = CV_TOGGLE_FLT(pt.x); |
|
pt.y = CV_TOGGLE_FLT(pt.y); |
|
|
|
if( xmin > pt.x ) |
|
xmin = pt.x; |
|
|
|
if( xmax < pt.x ) |
|
xmax = pt.x; |
|
|
|
if( ymin > pt.y ) |
|
ymin = pt.y; |
|
|
|
if( ymax < pt.y ) |
|
ymax = pt.y; |
|
} |
|
|
|
v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f); |
|
v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f); |
|
// because right and bottom sides of the bounding rectangle are not inclusive |
|
// (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil |
|
v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f); |
|
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f); |
|
} |
|
#endif |
|
|
|
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1); |
|
} |
|
|
|
|
|
static Rect maskBoundingRect( const Mat& img ) |
|
{ |
|
CV_Assert( img.depth() <= CV_8S && img.channels() == 1 ); |
|
|
|
Size size = img.size(); |
|
int xmin = size.width, ymin = -1, xmax = -1, ymax = -1, i, j, k; |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const uchar* _ptr = img.ptr(i); |
|
const uchar* ptr = (const uchar*)alignPtr(_ptr, 4); |
|
int have_nz = 0, k_min, offset = (int)(ptr - _ptr); |
|
j = 0; |
|
offset = MIN(offset, size.width); |
|
for( ; j < offset; j++ ) |
|
if( _ptr[j] ) |
|
{ |
|
have_nz = 1; |
|
break; |
|
} |
|
if( j < offset ) |
|
{ |
|
if( j < xmin ) |
|
xmin = j; |
|
if( j > xmax ) |
|
xmax = j; |
|
} |
|
if( offset < size.width ) |
|
{ |
|
xmin -= offset; |
|
xmax -= offset; |
|
size.width -= offset; |
|
j = 0; |
|
for( ; j <= xmin - 4; j += 4 ) |
|
if( *((int*)(ptr+j)) ) |
|
break; |
|
for( ; j < xmin; j++ ) |
|
if( ptr[j] ) |
|
{ |
|
xmin = j; |
|
if( j > xmax ) |
|
xmax = j; |
|
have_nz = 1; |
|
break; |
|
} |
|
k_min = MAX(j-1, xmax); |
|
k = size.width - 1; |
|
for( ; k > k_min && (k&3) != 3; k-- ) |
|
if( ptr[k] ) |
|
break; |
|
if( k > k_min && (k&3) == 3 ) |
|
{ |
|
for( ; k > k_min+3; k -= 4 ) |
|
if( *((int*)(ptr+k-3)) ) |
|
break; |
|
} |
|
for( ; k > k_min; k-- ) |
|
if( ptr[k] ) |
|
{ |
|
xmax = k; |
|
have_nz = 1; |
|
break; |
|
} |
|
if( !have_nz ) |
|
{ |
|
j &= ~3; |
|
for( ; j <= k - 3; j += 4 ) |
|
if( *((int*)(ptr+j)) ) |
|
break; |
|
for( ; j <= k; j++ ) |
|
if( ptr[j] ) |
|
{ |
|
have_nz = 1; |
|
break; |
|
} |
|
} |
|
xmin += offset; |
|
xmax += offset; |
|
size.width += offset; |
|
} |
|
if( have_nz ) |
|
{ |
|
if( ymin < 0 ) |
|
ymin = i; |
|
ymax = i; |
|
} |
|
} |
|
|
|
if( xmin >= size.width ) |
|
xmin = ymin = 0; |
|
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1); |
|
} |
|
|
|
} |
|
|
|
cv::Rect cv::boundingRect(InputArray array) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat m = array.getMat(); |
|
return m.depth() <= CV_8U ? maskBoundingRect(m) : pointSetBoundingRect(m); |
|
} |
|
|
|
////////////////////////////////////////////// C API /////////////////////////////////////////// |
|
|
|
CV_IMPL int |
|
cvMinEnclosingCircle( const void* array, CvPoint2D32f * _center, float *_radius ) |
|
{ |
|
cv::AutoBuffer<double> abuf; |
|
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf); |
|
cv::Point2f center; |
|
float radius; |
|
|
|
cv::minEnclosingCircle(points, center, radius); |
|
if(_center) |
|
*_center = cvPoint2D32f(center); |
|
if(_radius) |
|
*_radius = radius; |
|
return 1; |
|
} |
|
|
|
static void |
|
icvMemCopy( double **buf1, double **buf2, double **buf3, int *b_max ) |
|
{ |
|
CV_Assert( (*buf1 != NULL || *buf2 != NULL) && *buf3 != NULL ); |
|
|
|
int bb = *b_max; |
|
if( *buf2 == NULL ) |
|
{ |
|
*b_max = 2 * (*b_max); |
|
*buf2 = (double *)cvAlloc( (*b_max) * sizeof( double )); |
|
|
|
memcpy( *buf2, *buf3, bb * sizeof( double )); |
|
|
|
*buf3 = *buf2; |
|
cvFree( buf1 ); |
|
*buf1 = NULL; |
|
} |
|
else |
|
{ |
|
*b_max = 2 * (*b_max); |
|
*buf1 = (double *) cvAlloc( (*b_max) * sizeof( double )); |
|
|
|
memcpy( *buf1, *buf3, bb * sizeof( double )); |
|
|
|
*buf3 = *buf1; |
|
cvFree( buf2 ); |
|
*buf2 = NULL; |
|
} |
|
} |
|
|
|
|
|
/* area of a contour sector */ |
|
static double icvContourSecArea( CvSeq * contour, CvSlice slice ) |
|
{ |
|
cv::Point pt; /* pointer to points */ |
|
cv::Point pt_s, pt_e; /* first and last points */ |
|
CvSeqReader reader; /* points reader of contour */ |
|
|
|
int p_max = 2, p_ind; |
|
int lpt, flag, i; |
|
double a00; /* unnormalized moments m00 */ |
|
double xi, yi, xi_1, yi_1, x0, y0, dxy, sk, sk1, t; |
|
double x_s, y_s, nx, ny, dx, dy, du, dv; |
|
double eps = 1.e-5; |
|
double *p_are1, *p_are2, *p_are; |
|
double area = 0; |
|
|
|
CV_Assert( contour != NULL && CV_IS_SEQ_POINT_SET( contour )); |
|
|
|
lpt = cvSliceLength( slice, contour ); |
|
/*if( n2 >= n1 ) |
|
lpt = n2 - n1 + 1; |
|
else |
|
lpt = contour->total - n1 + n2 + 1;*/ |
|
|
|
if( contour->total <= 0 || lpt <= 2 ) |
|
return 0.; |
|
|
|
a00 = x0 = y0 = xi_1 = yi_1 = 0; |
|
sk1 = 0; |
|
flag = 0; |
|
dxy = 0; |
|
p_are1 = (double *) cvAlloc( p_max * sizeof( double )); |
|
|
|
p_are = p_are1; |
|
p_are2 = NULL; |
|
|
|
cvStartReadSeq( contour, &reader, 0 ); |
|
cvSetSeqReaderPos( &reader, slice.start_index ); |
|
{ CvPoint pt_s_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_s_, reader); pt_s = pt_s_; } |
|
p_ind = 0; |
|
cvSetSeqReaderPos( &reader, slice.end_index ); |
|
{ CvPoint pt_e_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_e_, reader); pt_e = pt_e_; } |
|
|
|
/* normal coefficients */ |
|
nx = pt_s.y - pt_e.y; |
|
ny = pt_e.x - pt_s.x; |
|
cvSetSeqReaderPos( &reader, slice.start_index ); |
|
|
|
while( lpt-- > 0 ) |
|
{ |
|
{ CvPoint pt_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_, reader); pt = pt_; } |
|
|
|
if( flag == 0 ) |
|
{ |
|
xi_1 = (double) pt.x; |
|
yi_1 = (double) pt.y; |
|
x0 = xi_1; |
|
y0 = yi_1; |
|
sk1 = 0; |
|
flag = 1; |
|
} |
|
else |
|
{ |
|
xi = (double) pt.x; |
|
yi = (double) pt.y; |
|
|
|
/**************** edges intersection examination **************************/ |
|
sk = nx * (xi - pt_s.x) + ny * (yi - pt_s.y); |
|
if( (fabs( sk ) < eps && lpt > 0) || sk * sk1 < -eps ) |
|
{ |
|
if( fabs( sk ) < eps ) |
|
{ |
|
dxy = xi_1 * yi - xi * yi_1; |
|
a00 = a00 + dxy; |
|
dxy = xi * y0 - x0 * yi; |
|
a00 = a00 + dxy; |
|
|
|
if( p_ind >= p_max ) |
|
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max ); |
|
|
|
p_are[p_ind] = a00 / 2.; |
|
p_ind++; |
|
a00 = 0; |
|
sk1 = 0; |
|
x0 = xi; |
|
y0 = yi; |
|
dxy = 0; |
|
} |
|
else |
|
{ |
|
/* define intersection point */ |
|
dv = yi - yi_1; |
|
du = xi - xi_1; |
|
dx = ny; |
|
dy = -nx; |
|
if( fabs( du ) > eps ) |
|
t = ((yi_1 - pt_s.y) * du + dv * (pt_s.x - xi_1)) / |
|
(du * dy - dx * dv); |
|
else |
|
t = (xi_1 - pt_s.x) / dx; |
|
if( t > eps && t < 1 - eps ) |
|
{ |
|
x_s = pt_s.x + t * dx; |
|
y_s = pt_s.y + t * dy; |
|
dxy = xi_1 * y_s - x_s * yi_1; |
|
a00 += dxy; |
|
dxy = x_s * y0 - x0 * y_s; |
|
a00 += dxy; |
|
if( p_ind >= p_max ) |
|
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max ); |
|
|
|
p_are[p_ind] = a00 / 2.; |
|
p_ind++; |
|
|
|
a00 = 0; |
|
sk1 = 0; |
|
x0 = x_s; |
|
y0 = y_s; |
|
dxy = x_s * yi - xi * y_s; |
|
} |
|
} |
|
} |
|
else |
|
dxy = xi_1 * yi - xi * yi_1; |
|
|
|
a00 += dxy; |
|
xi_1 = xi; |
|
yi_1 = yi; |
|
sk1 = sk; |
|
|
|
} |
|
} |
|
|
|
xi = x0; |
|
yi = y0; |
|
dxy = xi_1 * yi - xi * yi_1; |
|
|
|
a00 += dxy; |
|
|
|
if( p_ind >= p_max ) |
|
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max ); |
|
|
|
p_are[p_ind] = a00 / 2.; |
|
p_ind++; |
|
|
|
// common area calculation |
|
area = 0; |
|
for( i = 0; i < p_ind; i++ ) |
|
area += fabs( p_are[i] ); |
|
|
|
if( p_are1 != NULL ) |
|
cvFree( &p_are1 ); |
|
else if( p_are2 != NULL ) |
|
cvFree( &p_are2 ); |
|
|
|
return area; |
|
} |
|
|
|
|
|
/* external contour area function */ |
|
CV_IMPL double |
|
cvContourArea( const void *array, CvSlice slice, int oriented ) |
|
{ |
|
double area = 0; |
|
|
|
CvContour contour_header; |
|
CvSeq* contour = 0; |
|
CvSeqBlock block; |
|
|
|
if( CV_IS_SEQ( array )) |
|
{ |
|
contour = (CvSeq*)array; |
|
if( !CV_IS_SEQ_POLYLINE( contour )) |
|
CV_Error( CV_StsBadArg, "Unsupported sequence type" ); |
|
} |
|
else |
|
{ |
|
contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE, array, &contour_header, &block ); |
|
} |
|
|
|
if( cvSliceLength( slice, contour ) == contour->total ) |
|
{ |
|
cv::AutoBuffer<double> abuf; |
|
cv::Mat points = cv::cvarrToMat(contour, false, false, 0, &abuf); |
|
return cv::contourArea( points, oriented !=0 ); |
|
} |
|
|
|
if( CV_SEQ_ELTYPE( contour ) != CV_32SC2 ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"Only curves with integer coordinates are supported in case of contour slice" ); |
|
area = icvContourSecArea( contour, slice ); |
|
return oriented ? area : fabs(area); |
|
} |
|
|
|
|
|
/* calculates length of a curve (e.g. contour perimeter) */ |
|
CV_IMPL double |
|
cvArcLength( const void *array, CvSlice slice, int is_closed ) |
|
{ |
|
double perimeter = 0; |
|
|
|
int i, j = 0, count; |
|
const int N = 16; |
|
float buf[N]; |
|
CvMat buffer = cvMat( 1, N, CV_32F, buf ); |
|
CvSeqReader reader; |
|
CvContour contour_header; |
|
CvSeq* contour = 0; |
|
CvSeqBlock block; |
|
|
|
if( CV_IS_SEQ( array )) |
|
{ |
|
contour = (CvSeq*)array; |
|
if( !CV_IS_SEQ_POLYLINE( contour )) |
|
CV_Error( CV_StsBadArg, "Unsupported sequence type" ); |
|
if( is_closed < 0 ) |
|
is_closed = CV_IS_SEQ_CLOSED( contour ); |
|
} |
|
else |
|
{ |
|
is_closed = is_closed > 0; |
|
contour = cvPointSeqFromMat( |
|
CV_SEQ_KIND_CURVE | (is_closed ? CV_SEQ_FLAG_CLOSED : 0), |
|
array, &contour_header, &block ); |
|
} |
|
|
|
if( contour->total > 1 ) |
|
{ |
|
int is_float = CV_SEQ_ELTYPE( contour ) == CV_32FC2; |
|
|
|
cvStartReadSeq( contour, &reader, 0 ); |
|
cvSetSeqReaderPos( &reader, slice.start_index ); |
|
count = cvSliceLength( slice, contour ); |
|
|
|
count -= !is_closed && count == contour->total; |
|
|
|
// scroll the reader by 1 point |
|
reader.prev_elem = reader.ptr; |
|
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader ); |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
float dx, dy; |
|
|
|
if( !is_float ) |
|
{ |
|
CvPoint* pt = (CvPoint*)reader.ptr; |
|
CvPoint* prev_pt = (CvPoint*)reader.prev_elem; |
|
|
|
dx = (float)pt->x - (float)prev_pt->x; |
|
dy = (float)pt->y - (float)prev_pt->y; |
|
} |
|
else |
|
{ |
|
CvPoint2D32f* pt = (CvPoint2D32f*)reader.ptr; |
|
CvPoint2D32f* prev_pt = (CvPoint2D32f*)reader.prev_elem; |
|
|
|
dx = pt->x - prev_pt->x; |
|
dy = pt->y - prev_pt->y; |
|
} |
|
|
|
reader.prev_elem = reader.ptr; |
|
CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); |
|
// Bugfix by Axel at rubico.com 2010-03-22, affects closed slices only |
|
// wraparound not handled by CV_NEXT_SEQ_ELEM |
|
if( is_closed && i == count - 2 ) |
|
cvSetSeqReaderPos( &reader, slice.start_index ); |
|
|
|
buffer.data.fl[j] = dx * dx + dy * dy; |
|
if( ++j == N || i == count - 1 ) |
|
{ |
|
buffer.cols = j; |
|
cvPow( &buffer, &buffer, 0.5 ); |
|
for( ; j > 0; j-- ) |
|
perimeter += buffer.data.fl[j-1]; |
|
} |
|
} |
|
} |
|
|
|
return perimeter; |
|
} |
|
|
|
|
|
CV_IMPL CvBox2D |
|
cvFitEllipse2( const CvArr* array ) |
|
{ |
|
cv::AutoBuffer<double> abuf; |
|
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf); |
|
return cvBox2D(cv::fitEllipse(points)); |
|
} |
|
|
|
/* Calculates bounding rectangle of a point set or retrieves already calculated */ |
|
CV_IMPL CvRect |
|
cvBoundingRect( CvArr* array, int update ) |
|
{ |
|
cv::Rect rect; |
|
CvContour contour_header; |
|
CvSeq* ptseq = 0; |
|
CvSeqBlock block; |
|
|
|
CvMat stub, *mat = 0; |
|
int calculate = update; |
|
|
|
if( CV_IS_SEQ( array )) |
|
{ |
|
ptseq = (CvSeq*)array; |
|
if( !CV_IS_SEQ_POINT_SET( ptseq )) |
|
CV_Error( CV_StsBadArg, "Unsupported sequence type" ); |
|
|
|
if( ptseq->header_size < (int)sizeof(CvContour)) |
|
{ |
|
update = 0; |
|
calculate = 1; |
|
} |
|
} |
|
else |
|
{ |
|
mat = cvGetMat( array, &stub ); |
|
if( CV_MAT_TYPE(mat->type) == CV_32SC2 || |
|
CV_MAT_TYPE(mat->type) == CV_32FC2 ) |
|
{ |
|
ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block); |
|
mat = 0; |
|
} |
|
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 && |
|
CV_MAT_TYPE(mat->type) != CV_8SC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, |
|
"The image/matrix format is not supported by the function" ); |
|
update = 0; |
|
calculate = 1; |
|
} |
|
|
|
if( !calculate ) |
|
return ((CvContour*)ptseq)->rect; |
|
|
|
if( mat ) |
|
{ |
|
rect = cvRect(cv::maskBoundingRect(cv::cvarrToMat(mat))); |
|
} |
|
else if( ptseq->total ) |
|
{ |
|
cv::AutoBuffer<double> abuf; |
|
rect = cvRect(cv::pointSetBoundingRect(cv::cvarrToMat(ptseq, false, false, 0, &abuf))); |
|
} |
|
if( update ) |
|
((CvContour*)ptseq)->rect = cvRect(rect); |
|
return cvRect(rect); |
|
} |
|
|
|
/* End of file. */
|
|
|