mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1663 lines
41 KiB
1663 lines
41 KiB
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
|
|
namespace { |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Remap |
|
|
|
enum{HALF_SIZE=0, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH}; |
|
CV_ENUM(RemapMode, HALF_SIZE, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH); |
|
#define ALL_REMAP_MODES ValuesIn(RemapMode::all()) |
|
|
|
void generateMap(cv::Mat& map_x, cv::Mat& map_y, int remapMode) |
|
{ |
|
for (int j = 0; j < map_x.rows; ++j) |
|
{ |
|
for (int i = 0; i < map_x.cols; ++i) |
|
{ |
|
switch (remapMode) |
|
{ |
|
case HALF_SIZE: |
|
if (i > map_x.cols*0.25 && i < map_x.cols*0.75 && j > map_x.rows*0.25 && j < map_x.rows*0.75) |
|
{ |
|
map_x.at<float>(j,i) = 2 * (i - map_x.cols * 0.25) + 0.5; |
|
map_y.at<float>(j,i) = 2 * (j - map_x.rows * 0.25) + 0.5; |
|
} |
|
else |
|
{ |
|
map_x.at<float>(j,i) = 0; |
|
map_y.at<float>(j,i) = 0; |
|
} |
|
break; |
|
case UPSIDE_DOWN: |
|
map_x.at<float>(j,i) = i; |
|
map_y.at<float>(j,i) = map_x.rows - j; |
|
break; |
|
case REFLECTION_X: |
|
map_x.at<float>(j,i) = map_x.cols - i; |
|
map_y.at<float>(j,i) = j; |
|
break; |
|
case REFLECTION_BOTH: |
|
map_x.at<float>(j,i) = map_x.cols - i; |
|
map_y.at<float>(j,i) = map_x.rows - j; |
|
break; |
|
} // end of switch |
|
} |
|
} |
|
} |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border_Mode, cv::Size, MatDepth, int, Interpolation, BorderMode, RemapMode); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
ALL_BORDER_MODES, |
|
ALL_REMAP_MODES)) |
|
{ |
|
declare.time(20.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int interpolation = GET_PARAM(3); |
|
int borderMode = GET_PARAM(4); |
|
int remapMode = GET_PARAM(5); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
cv::Mat xmap(size, CV_32FC1); |
|
cv::Mat ymap(size, CV_32FC1); |
|
|
|
generateMap(xmap, ymap, remapMode); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_xmap(xmap); |
|
cv::gpu::GpuMat d_ymap(ymap); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::remap(src, dst, xmap, ymap, interpolation, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::remap(src, dst, xmap, ymap, interpolation, borderMode); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Resize |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Scale, cv::Size, MatDepth, int, Interpolation, double); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
ALL_INTERPOLATIONS, |
|
Values(0.5, 0.3, 2.0))) |
|
{ |
|
declare.time(20.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int interpolation = GET_PARAM(3); |
|
double f = GET_PARAM(4); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::resize(d_src, d_dst, cv::Size(), f, f, interpolation); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::resize(d_src, d_dst, cv::Size(), f, f, interpolation); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ResizeArea |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Scale, cv::Size, MatDepth, int, double); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Scale, ImgProc_ResizeArea, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
Values(0.2, 0.1, 0.05))) |
|
{ |
|
declare.time(1.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int interpolation = cv::INTER_AREA; |
|
double f = GET_PARAM(3); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::resize(d_src, d_dst, cv::Size(), f, f, interpolation); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::resize(d_src, d_dst, cv::Size(), f, f, interpolation); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::resize(src, dst, cv::Size(), f, f, interpolation); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// WarpAffine |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border, cv::Size, MatDepth, int, Interpolation, BorderMode); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
ALL_BORDER_MODES)) |
|
{ |
|
declare.time(20.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int interpolation = GET_PARAM(3); |
|
int borderMode = GET_PARAM(4); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
const double aplha = CV_PI / 4; |
|
double mat[2][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2}, |
|
{std::sin(aplha), std::cos(aplha), 0}}; |
|
cv::Mat M(2, 3, CV_64F, (void*) mat); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::warpAffine(d_src, d_dst, M, size, interpolation, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::warpAffine(d_src, d_dst, M, size, interpolation, borderMode); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::warpAffine(src, dst, M, size, interpolation, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::warpAffine(src, dst, M, size, interpolation, borderMode); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// WarpPerspective |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), |
|
ALL_BORDER_MODES)) |
|
{ |
|
declare.time(20.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int interpolation = GET_PARAM(3); |
|
int borderMode = GET_PARAM(4); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
const double aplha = CV_PI / 4; |
|
double mat[3][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2}, |
|
{std::sin(aplha), std::cos(aplha), 0}, |
|
{0.0, 0.0, 1.0}}; |
|
cv::Mat M(3, 3, CV_64F, (void*) mat); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::warpPerspective(d_src, d_dst, M, size, interpolation, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::warpPerspective(d_src, d_dst, M, size, interpolation, borderMode); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::warpPerspective(src, dst, M, size, interpolation, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::warpPerspective(src, dst, M, size, interpolation, borderMode); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CopyMakeBorder |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Border, cv::Size, MatDepth, int, BorderMode); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
ALL_BORDER_MODES)) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int borderMode = GET_PARAM(3); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::copyMakeBorder(d_src, d_dst, 5, 5, 5, 5, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::copyMakeBorder(d_src, d_dst, 5, 5, 5, 5, borderMode); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Threshold |
|
|
|
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV) |
|
#define ALL_THRESH_OPS ValuesIn(ThreshOp::all()) |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Op, cv::Size, MatDepth, ThreshOp); |
|
|
|
PERF_TEST_P(Sz_Depth_Op, ImgProc_Threshold, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F, CV_64F), |
|
ALL_THRESH_OPS)) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int threshOp = GET_PARAM(2); |
|
|
|
cv::Mat src(size, depth); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::threshold(d_src, d_dst, 100.0, 255.0, threshOp); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::threshold(d_src, d_dst, 100.0, 255.0, threshOp); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::threshold(src, dst, 100.0, 255.0, threshOp); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::threshold(src, dst, 100.0, 255.0, threshOp); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Integral |
|
|
|
PERF_TEST_P(Sz, ImgProc_Integral, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::integralBuffered(d_src, d_dst, d_buf); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::integralBuffered(d_src, d_dst, d_buf); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::integral(src, dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::integral(src, dst); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// IntegralSqr |
|
|
|
PERF_TEST_P(Sz, ImgProc_IntegralSqr, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::sqrIntegral(d_src, d_dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::sqrIntegral(d_src, d_dst); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HistEvenC1 |
|
|
|
PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC1, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_16S))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
|
|
cv::Mat src(size, depth); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_hist; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::histEven(d_src, d_hist, d_buf, 30, 0, 180); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::histEven(d_src, d_hist, d_buf, 30, 0, 180); |
|
} |
|
} |
|
else |
|
{ |
|
int hbins = 30; |
|
float hranges[] = {0.0f, 180.0f}; |
|
int histSize[] = {hbins}; |
|
const float* ranges[] = {hranges}; |
|
int channels[] = {0}; |
|
|
|
cv::Mat hist; |
|
|
|
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::calcHist(&src, 1, channels, cv::Mat(), hist, 1, histSize, ranges); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HistEvenC4 |
|
|
|
PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC4, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_16S))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
|
|
cv::Mat src(size, CV_MAKE_TYPE(depth, 4)); |
|
fillRandom(src); |
|
|
|
int histSize[] = {30, 30, 30, 30}; |
|
int lowerLevel[] = {0, 0, 0, 0}; |
|
int upperLevel[] = {180, 180, 180, 180}; |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_hist[4]; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::histEven(d_src, d_hist, d_buf, histSize, lowerLevel, upperLevel); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::histEven(d_src, d_hist, d_buf, histSize, lowerLevel, upperLevel); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CalcHist |
|
|
|
PERF_TEST_P(Sz, ImgProc_CalcHist, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_hist; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::calcHist(d_src, d_hist, d_buf); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::calcHist(d_src, d_hist, d_buf); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// EqualizeHist |
|
|
|
PERF_TEST_P(Sz, ImgProc_EqualizeHist, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC1); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
cv::gpu::GpuMat d_hist; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::equalizeHist(d_src, d_dst, d_hist, d_buf); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::equalizeHist(d_src, d_dst, d_hist, d_buf); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::equalizeHist(src, dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::equalizeHist(src, dst); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ColumnSum |
|
|
|
PERF_TEST_P(Sz, ImgProc_ColumnSum, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_32FC1); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::columnSum(d_src, d_dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::columnSum(d_src, d_dst); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Canny |
|
|
|
DEF_PARAM_TEST(Image_AppertureSz_L2gradient, string, int, bool); |
|
|
|
PERF_TEST_P(Image_AppertureSz_L2gradient, ImgProc_Canny, Combine( |
|
Values("perf/800x600.jpg", "perf/1280x1024.jpg", "perf/1680x1050.jpg"), |
|
Values(3, 5), |
|
Bool())) |
|
{ |
|
string fileName = GET_PARAM(0); |
|
int apperture_size = GET_PARAM(1); |
|
bool useL2gradient = GET_PARAM(2); |
|
|
|
cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_image(image); |
|
cv::gpu::GpuMat d_dst; |
|
cv::gpu::CannyBuf d_buf; |
|
|
|
cv::gpu::Canny(d_image, d_buf, d_dst, 50.0, 100.0, apperture_size, useL2gradient); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::Canny(d_image, d_buf, d_dst, 50.0, 100.0, apperture_size, useL2gradient); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::Canny(image, dst, 50.0, 100.0, apperture_size, useL2gradient); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MeanShiftFiltering |
|
|
|
DEF_PARAM_TEST_1(Image, string); |
|
|
|
PERF_TEST_P(Image, ImgProc_MeanShiftFiltering, Values<string>("gpu/meanshift/cones.png")) |
|
{ |
|
declare.time(15.0); |
|
|
|
cv::Mat img = readImage(GetParam()); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::Mat rgba; |
|
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(rgba); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::meanShiftFiltering(d_src, d_dst, 50, 50); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::meanShiftFiltering(d_src, d_dst, 50, 50); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::pyrMeanShiftFiltering(img, dst, 50, 50); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::pyrMeanShiftFiltering(img, dst, 50, 50); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MeanShiftProc |
|
|
|
PERF_TEST_P(Image, ImgProc_MeanShiftProc, Values<string>("gpu/meanshift/cones.png")) |
|
{ |
|
declare.time(5.0); |
|
|
|
cv::Mat img = readImage(GetParam()); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::Mat rgba; |
|
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(rgba); |
|
cv::gpu::GpuMat d_dstr; |
|
cv::gpu::GpuMat d_dstsp; |
|
|
|
cv::gpu::meanShiftProc(d_src, d_dstr, d_dstsp, 50, 50); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::meanShiftProc(d_src, d_dstr, d_dstsp, 50, 50); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MeanShiftSegmentation |
|
|
|
PERF_TEST_P(Image, ImgProc_MeanShiftSegmentation, Values<string>("gpu/meanshift/cones.png")) |
|
{ |
|
declare.time(5.0); |
|
|
|
cv::Mat img = readImage(GetParam()); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
cv::Mat rgba; |
|
cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); |
|
|
|
cv::Mat dst; |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(rgba); |
|
|
|
cv::gpu::meanShiftSegmentation(d_src, dst, 10, 10, 20); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::meanShiftSegmentation(d_src, dst, 10, 10, 20); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BlendLinear |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_32F), Values(1, 3, 4))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat img1(size, type); |
|
fillRandom(img1); |
|
|
|
cv::Mat img2(size, type); |
|
fillRandom(img2); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_img1(img1); |
|
cv::gpu::GpuMat d_img2(img2); |
|
cv::gpu::GpuMat d_weights1(size, CV_32FC1, cv::Scalar::all(0.5)); |
|
cv::gpu::GpuMat d_weights2(size, CV_32FC1, cv::Scalar::all(0.5)); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::blendLinear(d_img1, d_img2, d_weights1, d_weights2, d_dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::blendLinear(d_img1, d_img2, d_weights1, d_weights2, d_dst); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Convolve |
|
|
|
DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool); |
|
|
|
PERF_TEST_P(Sz_KernelSz_Ccorr, ImgProc_Convolve, Combine(GPU_TYPICAL_MAT_SIZES, Values(17, 27, 32, 64), Bool())) |
|
{ |
|
declare.time(10.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int templ_size = GET_PARAM(1); |
|
bool ccorr = GET_PARAM(2); |
|
|
|
cv::Mat image(size, CV_32FC1); |
|
image.setTo(1.0); |
|
|
|
cv::Mat templ(templ_size, templ_size, CV_32FC1); |
|
templ.setTo(1.0); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_image = cv::gpu::createContinuous(size, CV_32FC1); |
|
d_image.upload(image); |
|
|
|
cv::gpu::GpuMat d_templ = cv::gpu::createContinuous(templ_size, templ_size, CV_32FC1); |
|
d_templ.upload(templ); |
|
|
|
cv::gpu::GpuMat d_dst; |
|
cv::gpu::ConvolveBuf d_buf; |
|
|
|
cv::gpu::convolve(d_image, d_templ, d_dst, ccorr, d_buf); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::convolve(d_image, d_templ, d_dst, ccorr, d_buf); |
|
} |
|
} |
|
else |
|
{ |
|
ASSERT_FALSE(ccorr); |
|
|
|
cv::Mat dst; |
|
|
|
cv::filter2D(image, dst, image.depth(), templ); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::filter2D(image, dst, image.depth(), templ); |
|
} |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// MatchTemplate8U |
|
|
|
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED) |
|
#define ALL_TEMPLATE_METHODS ValuesIn(TemplateMethod::all()) |
|
|
|
DEF_PARAM_TEST(Sz_TemplateSz_Cn_Method, cv::Size, cv::Size, int, TemplateMethod); |
|
|
|
PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), |
|
Values(1, 3, 4), |
|
ALL_TEMPLATE_METHODS)) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
cv::Size templ_size = GET_PARAM(1); |
|
int cn = GET_PARAM(2); |
|
int method = GET_PARAM(3); |
|
|
|
cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn)); |
|
fillRandom(image); |
|
|
|
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn)); |
|
fillRandom(templ); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_image(image); |
|
cv::gpu::GpuMat d_templ(templ); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::matchTemplate(d_image, d_templ, d_dst, method); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::matchTemplate(d_image, d_templ, d_dst, method); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::matchTemplate(image, templ, dst, method); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::matchTemplate(image, templ, dst, method); |
|
} |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// MatchTemplate32F |
|
|
|
PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate32F, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), |
|
Values(1, 3, 4), |
|
Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
cv::Size templ_size = GET_PARAM(1); |
|
int cn = GET_PARAM(2); |
|
int method = GET_PARAM(3); |
|
|
|
cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn)); |
|
fillRandom(image); |
|
|
|
cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn)); |
|
fillRandom(templ); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_image(image); |
|
cv::gpu::GpuMat d_templ(templ); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::matchTemplate(d_image, d_templ, d_dst, method); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::matchTemplate(d_image, d_templ, d_dst, method); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::matchTemplate(image, templ, dst, method); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::matchTemplate(image, templ, dst, method); |
|
} |
|
} |
|
}; |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MulSpectrums |
|
|
|
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT) |
|
|
|
DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags); |
|
|
|
PERF_TEST_P(Sz_Flags, ImgProc_MulSpectrums, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(0, DftFlags(cv::DFT_ROWS)))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int flag = GET_PARAM(1); |
|
|
|
cv::Mat a(size, CV_32FC2); |
|
fillRandom(a, 0, 100); |
|
|
|
cv::Mat b(size, CV_32FC2); |
|
fillRandom(b, 0, 100); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_a(a); |
|
cv::gpu::GpuMat d_b(b); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::mulSpectrums(d_a, d_b, d_dst, flag); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::mulSpectrums(d_a, d_b, d_dst, flag); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::mulSpectrums(a, b, dst, flag); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::mulSpectrums(a, b, dst, flag); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// MulAndScaleSpectrums |
|
|
|
PERF_TEST_P(Sz, ImgProc_MulAndScaleSpectrums, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
float scale = 1.f / size.area(); |
|
|
|
cv::Mat src1(size, CV_32FC2); |
|
fillRandom(src1, 0, 100); |
|
|
|
cv::Mat src2(size, CV_32FC2); |
|
fillRandom(src2, 0, 100); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src1(src1); |
|
cv::gpu::GpuMat d_src2(src2); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::mulAndScaleSpectrums(d_src1, d_src2, d_dst, cv::DFT_ROWS, scale, false); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::mulAndScaleSpectrums(d_src1, d_src2, d_dst, cv::DFT_ROWS, scale, false); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Dft |
|
|
|
PERF_TEST_P(Sz_Flags, ImgProc_Dft, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE)))) |
|
{ |
|
declare.time(10.0); |
|
|
|
cv::Size size = GET_PARAM(0); |
|
int flag = GET_PARAM(1); |
|
|
|
cv::Mat src(size, CV_32FC2); |
|
fillRandom(src, 0, 100); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::dft(d_src, d_dst, size, flag); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::dft(d_src, d_dst, size, flag); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::dft(src, dst, flag); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::dft(src, dst, flag); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CornerHarris |
|
|
|
DEF_PARAM_TEST(Image_Type_Border_BlockSz_ApertureSz, string, MatType, BorderMode, int, int); |
|
|
|
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerHarris, Combine( |
|
Values<string>("gpu/stereobm/aloe-L.png"), |
|
Values(CV_8UC1, CV_32FC1), |
|
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
|
Values(3, 5, 7), |
|
Values(0, 3, 5, 7))) |
|
{ |
|
string fileName = GET_PARAM(0); |
|
int type = GET_PARAM(1); |
|
int borderMode = GET_PARAM(2); |
|
int blockSize = GET_PARAM(3); |
|
int apertureSize = GET_PARAM(4); |
|
|
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
|
|
|
double k = 0.5; |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_dst; |
|
cv::gpu::GpuMat d_Dx; |
|
cv::gpu::GpuMat d_Dy; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::cornerHarris(d_img, d_dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, k, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::cornerHarris(d_img, d_dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, k, borderMode); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CornerMinEigenVal |
|
|
|
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerMinEigenVal, Combine( |
|
Values<string>("gpu/stereobm/aloe-L.png"), |
|
Values(CV_8UC1, CV_32FC1), |
|
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), |
|
Values(3, 5, 7), |
|
Values(0, 3, 5, 7))) |
|
{ |
|
string fileName = GET_PARAM(0); |
|
int type = GET_PARAM(1); |
|
int borderMode = GET_PARAM(2); |
|
int blockSize = GET_PARAM(3); |
|
int apertureSize = GET_PARAM(4); |
|
|
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_dst; |
|
cv::gpu::GpuMat d_Dx; |
|
cv::gpu::GpuMat d_Dy; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::cornerMinEigenVal(d_img, d_dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::cornerMinEigenVal(d_img, d_dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, borderMode); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BuildWarpPlaneMaps |
|
|
|
PERF_TEST_P(Sz, ImgProc_BuildWarpPlaneMaps, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); |
|
cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); |
|
cv::Mat T = cv::Mat::zeros(1, 3, CV_32F); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_map_x; |
|
cv::gpu::GpuMat d_map_y; |
|
|
|
cv::gpu::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, d_map_x, d_map_y); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, d_map_x, d_map_y); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BuildWarpCylindricalMaps |
|
|
|
PERF_TEST_P(Sz, ImgProc_BuildWarpCylindricalMaps, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); |
|
cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_map_x; |
|
cv::gpu::GpuMat d_map_y; |
|
|
|
cv::gpu::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, d_map_x, d_map_y); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, d_map_x, d_map_y); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// BuildWarpSphericalMaps |
|
|
|
PERF_TEST_P(Sz, ImgProc_BuildWarpSphericalMaps, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); |
|
cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_map_x; |
|
cv::gpu::GpuMat d_map_y; |
|
|
|
cv::gpu::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, d_map_x, d_map_y); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, d_map_x, d_map_y); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Rotate |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Cn_Inter, cv::Size, MatDepth, int, Interpolation); |
|
|
|
PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4), |
|
Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
int interpolation = GET_PARAM(3); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::rotate(d_src, d_dst, size, 30.0, 0, 0, interpolation); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::rotate(d_src, d_dst, size, 30.0, 0, 0, interpolation); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// PyrDown |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::pyrDown(d_src, d_dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::pyrDown(d_src, d_dst); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::pyrDown(src, dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::pyrDown(src, dst); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// PyrUp |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrUp, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(1, 3, 4))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::pyrUp(d_src, d_dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::pyrUp(d_src, d_dst); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::pyrUp(src, dst); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::pyrUp(src, dst); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// CvtColor |
|
|
|
DEF_PARAM_TEST(Sz_Depth_Code, cv::Size, MatDepth, CvtColorInfo); |
|
|
|
PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColor, Combine( |
|
GPU_TYPICAL_MAT_SIZES, |
|
Values(CV_8U, CV_16U, CV_32F), |
|
Values(CvtColorInfo(4, 4, cv::COLOR_RGBA2BGRA), |
|
CvtColorInfo(4, 1, cv::COLOR_BGRA2GRAY), |
|
CvtColorInfo(1, 4, cv::COLOR_GRAY2BGRA), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2XYZ), |
|
CvtColorInfo(3, 3, cv::COLOR_XYZ2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2YCrCb), |
|
CvtColorInfo(3, 3, cv::COLOR_YCrCb2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2YUV), |
|
CvtColorInfo(3, 3, cv::COLOR_YUV2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2HSV), |
|
CvtColorInfo(3, 3, cv::COLOR_HSV2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2HLS), |
|
CvtColorInfo(3, 3, cv::COLOR_HLS2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2Lab), |
|
CvtColorInfo(3, 3, cv::COLOR_RGB2Lab), |
|
CvtColorInfo(3, 3, cv::COLOR_BGR2Luv), |
|
CvtColorInfo(3, 3, cv::COLOR_RGB2Luv), |
|
CvtColorInfo(3, 3, cv::COLOR_Lab2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_Lab2RGB), |
|
CvtColorInfo(3, 3, cv::COLOR_Luv2BGR), |
|
CvtColorInfo(3, 3, cv::COLOR_Luv2RGB), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerBG2BGR), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerGB2BGR), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerRG2BGR), |
|
CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR), |
|
CvtColorInfo(4, 4, cv::COLOR_RGBA2mRGBA)))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
CvtColorInfo info = GET_PARAM(2); |
|
|
|
cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::cvtColor(d_src, d_dst, info.code, info.dcn); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::cvtColor(d_src, d_dst, info.code, info.dcn); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat dst; |
|
|
|
cv::cvtColor(src, dst, info.code, info.dcn); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::cvtColor(src, dst, info.code, info.dcn); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// SwapChannels |
|
|
|
PERF_TEST_P(Sz, ImgProc_SwapChannels, GPU_TYPICAL_MAT_SIZES) |
|
{ |
|
cv::Size size = GetParam(); |
|
|
|
cv::Mat src(size, CV_8UC4); |
|
fillRandom(src); |
|
|
|
const int dstOrder[] = {2, 1, 0, 3}; |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
|
|
cv::gpu::swapChannels(d_src, dstOrder); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::swapChannels(d_src, dstOrder); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// AlphaComp |
|
|
|
CV_ENUM(AlphaOp, cv::gpu::ALPHA_OVER, cv::gpu::ALPHA_IN, cv::gpu::ALPHA_OUT, cv::gpu::ALPHA_ATOP, cv::gpu::ALPHA_XOR, cv::gpu::ALPHA_PLUS, cv::gpu::ALPHA_OVER_PREMUL, cv::gpu::ALPHA_IN_PREMUL, cv::gpu::ALPHA_OUT_PREMUL, cv::gpu::ALPHA_ATOP_PREMUL, cv::gpu::ALPHA_XOR_PREMUL, cv::gpu::ALPHA_PLUS_PREMUL, cv::gpu::ALPHA_PREMUL) |
|
#define ALL_ALPHA_OPS ValuesIn(AlphaOp::all()) |
|
|
|
DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, AlphaOp); |
|
|
|
PERF_TEST_P(Sz_Type_Op, ImgProc_AlphaComp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC4, CV_16UC4, CV_32SC4, CV_32FC4), ALL_ALPHA_OPS)) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int type = GET_PARAM(1); |
|
int alpha_op = GET_PARAM(2); |
|
|
|
cv::Mat img1(size, type); |
|
fillRandom(img1); |
|
|
|
cv::Mat img2(size, type); |
|
fillRandom(img2); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_img1(img1); |
|
cv::gpu::GpuMat d_img2(img2); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::alphaComp(d_img1, d_img2, d_dst, alpha_op); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::alphaComp(d_img1, d_img2, d_dst, alpha_op); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ImagePyramidBuild |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), Values(1, 3, 4))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
|
|
cv::gpu::ImagePyramid d_pyr; |
|
|
|
d_pyr.build(d_src, 5); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_pyr.build(d_src, 5); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// ImagePyramidGetLayer |
|
|
|
PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), Values(1, 3, 4))) |
|
{ |
|
cv::Size size = GET_PARAM(0); |
|
int depth = GET_PARAM(1); |
|
int channels = GET_PARAM(2); |
|
|
|
int type = CV_MAKE_TYPE(depth, channels); |
|
|
|
cv::Mat src(size, type); |
|
fillRandom(src); |
|
|
|
cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_dst; |
|
|
|
cv::gpu::ImagePyramid d_pyr(d_src, 3); |
|
|
|
d_pyr.getLayer(d_dst, dstSize); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_pyr.getLayer(d_dst, dstSize); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// HoughLines |
|
|
|
DEF_PARAM_TEST(Sz_DoSort, cv::Size, bool); |
|
|
|
PERF_TEST_P(Sz_DoSort, ImgProc_HoughLines, Combine(GPU_TYPICAL_MAT_SIZES, Bool())) |
|
{ |
|
declare.time(30.0); |
|
|
|
const cv::Size size = GET_PARAM(0); |
|
const bool doSort = GET_PARAM(1); |
|
|
|
const float rho = 1.0f; |
|
const float theta = CV_PI / 180.0f; |
|
const int threshold = 300; |
|
|
|
cv::RNG rng(123456789); |
|
|
|
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); |
|
|
|
const int numLines = rng.uniform(100, 300); |
|
for (int i = 0; i < numLines; ++i) |
|
{ |
|
cv::Point p1(rng.uniform(0, src.cols), rng.uniform(0, src.rows)); |
|
cv::Point p2(rng.uniform(0, src.cols), rng.uniform(0, src.rows)); |
|
cv::line(src, p1, p2, cv::Scalar::all(255), 2); |
|
} |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_lines; |
|
cv::gpu::GpuMat d_accum; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort); |
|
} |
|
} |
|
else |
|
{ |
|
std::vector<cv::Vec2f> lines; |
|
cv::HoughLines(src, lines, rho, theta, threshold); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::HoughLines(src, lines, rho, theta, threshold); |
|
} |
|
} |
|
} |
|
|
|
} // namespace
|
|
|