mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.1 KiB
172 lines
6.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <string> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
class CV_GrabcutTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_GrabcutTest(); |
|
~CV_GrabcutTest(); |
|
protected: |
|
bool verify(const Mat& mask, const Mat& exp); |
|
void run(int); |
|
}; |
|
|
|
CV_GrabcutTest::CV_GrabcutTest() {} |
|
CV_GrabcutTest::~CV_GrabcutTest() {} |
|
|
|
bool CV_GrabcutTest::verify(const Mat& mask, const Mat& exp) |
|
{ |
|
const float maxDiffRatio = 0.005f; |
|
int expArea = countNonZero( exp ); |
|
int nonIntersectArea = countNonZero( mask != exp ); |
|
|
|
float curRatio = (float)nonIntersectArea / (float)expArea; |
|
ts->printf( cvtest::TS::LOG, "nonIntersectArea/expArea = %f\n", curRatio ); |
|
return curRatio < maxDiffRatio; |
|
} |
|
|
|
void CV_GrabcutTest::run( int /* start_from */) |
|
{ |
|
cvtest::DefaultRngAuto defRng; |
|
|
|
Mat img = imread(string(ts->get_data_path()) + "shared/airplane.png"); |
|
Mat mask_prob = imread(string(ts->get_data_path()) + "grabcut/mask_prob.png", 0); |
|
Mat exp_mask1 = imread(string(ts->get_data_path()) + "grabcut/exp_mask1.png", 0); |
|
Mat exp_mask2 = imread(string(ts->get_data_path()) + "grabcut/exp_mask2.png", 0); |
|
|
|
if (img.empty() || (!mask_prob.empty() && img.size() != mask_prob.size()) || |
|
(!exp_mask1.empty() && img.size() != exp_mask1.size()) || |
|
(!exp_mask2.empty() && img.size() != exp_mask2.size()) ) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); |
|
return; |
|
} |
|
|
|
Rect rect(Point(24, 126), Point(483, 294)); |
|
Mat exp_bgdModel, exp_fgdModel; |
|
|
|
Mat mask; |
|
mask = Scalar(0); |
|
Mat bgdModel, fgdModel; |
|
grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_RECT ); |
|
grabCut( img, mask, rect, bgdModel, fgdModel, 2, GC_EVAL ); |
|
|
|
// Multiply images by 255 for more visuality of test data. |
|
if( mask_prob.empty() ) |
|
{ |
|
mask.copyTo( mask_prob ); |
|
imwrite(string(ts->get_data_path()) + "grabcut/mask_prob.png", mask_prob); |
|
} |
|
if( exp_mask1.empty() ) |
|
{ |
|
exp_mask1 = (mask & 1) * 255; |
|
imwrite(string(ts->get_data_path()) + "grabcut/exp_mask1.png", exp_mask1); |
|
} |
|
|
|
if (!verify((mask & 1) * 255, exp_mask1)) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return; |
|
} |
|
|
|
mask = mask_prob; |
|
bgdModel.release(); |
|
fgdModel.release(); |
|
rect = Rect(); |
|
grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_MASK ); |
|
grabCut( img, mask, rect, bgdModel, fgdModel, 1, GC_EVAL ); |
|
|
|
if( exp_mask2.empty() ) |
|
{ |
|
exp_mask2 = (mask & 1) * 255; |
|
imwrite(string(ts->get_data_path()) + "grabcut/exp_mask2.png", exp_mask2); |
|
} |
|
|
|
if (!verify((mask & 1) * 255, exp_mask2)) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return; |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Imgproc_GrabCut, regression) { CV_GrabcutTest test; test.safe_run(); } |
|
|
|
TEST(Imgproc_GrabCut, repeatability) |
|
{ |
|
cvtest::TS& ts = *cvtest::TS::ptr(); |
|
|
|
Mat image_1 = imread(string(ts.get_data_path()) + "grabcut/image1652.ppm", IMREAD_COLOR); |
|
Mat mask_1 = imread(string(ts.get_data_path()) + "grabcut/mask1652.ppm", IMREAD_GRAYSCALE); |
|
Rect roi_1(0, 0, 150, 150); |
|
|
|
Mat image_2 = image_1.clone(); |
|
Mat mask_2 = mask_1.clone(); |
|
Rect roi_2 = roi_1; |
|
|
|
Mat image_3 = image_1.clone(); |
|
Mat mask_3 = mask_1.clone(); |
|
Rect roi_3 = roi_1; |
|
|
|
Mat bgdModel_1, fgdModel_1; |
|
Mat bgdModel_2, fgdModel_2; |
|
Mat bgdModel_3, fgdModel_3; |
|
|
|
theRNG().state = 12378213; |
|
grabCut(image_1, mask_1, roi_1, bgdModel_1, fgdModel_1, 1, GC_INIT_WITH_MASK); |
|
theRNG().state = 12378213; |
|
grabCut(image_2, mask_2, roi_2, bgdModel_2, fgdModel_2, 1, GC_INIT_WITH_MASK); |
|
theRNG().state = 12378213; |
|
grabCut(image_3, mask_3, roi_3, bgdModel_3, fgdModel_3, 1, GC_INIT_WITH_MASK); |
|
|
|
EXPECT_EQ(0, countNonZero(mask_1 != mask_2)); |
|
EXPECT_EQ(0, countNonZero(mask_1 != mask_3)); |
|
EXPECT_EQ(0, countNonZero(mask_2 != mask_3)); |
|
}
|
|
|