mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
11 KiB
311 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <string> |
|
|
|
#ifdef HAVE_CVCONFIG_H |
|
#include "cvconfig.h" |
|
#endif |
|
|
|
#ifdef HAVE_TBB |
|
#include "tbb/task_scheduler_init.h" |
|
#endif |
|
|
|
using namespace cv; |
|
|
|
const int num_detections = 3; |
|
const float true_scores[3] = {-0.383931f, -0.825876f, -0.959934f}; |
|
const float score_thr = 0.05f; |
|
const CvRect true_bounding_boxes[3] = {cvRect(0, 45, 362, 452), cvRect(304, 0, 64, 80), cvRect(236, 0, 108, 59)}; |
|
|
|
class CV_LatentSVMDetectorTest : public cvtest::BaseTest |
|
{ |
|
protected: |
|
void run(int); |
|
bool isEqual(CvRect r1, CvRect r2, int eps); |
|
}; |
|
|
|
bool CV_LatentSVMDetectorTest::isEqual(CvRect r1, CvRect r2, int eps) |
|
{ |
|
return (std::abs(r1.x - r2.x) <= eps |
|
&& std::abs(r1.y - r2.y) <= eps |
|
&& std::abs(r1.width - r2.width) <= eps |
|
&& std::abs(r1.height - r2.height) <= eps); |
|
} |
|
|
|
void CV_LatentSVMDetectorTest::run( int /* start_from */) |
|
{ |
|
string img_path = string(ts->get_data_path()) + "latentsvmdetector/cat.png"; |
|
string model_path = string(ts->get_data_path()) + "latentsvmdetector/models_VOC2007/cat.xml"; |
|
int numThreads = -1; |
|
|
|
#ifdef HAVE_TBB |
|
numThreads = 2; |
|
tbb::task_scheduler_init init(tbb::task_scheduler_init::deferred); |
|
init.initialize(numThreads); |
|
#endif |
|
|
|
IplImage* image = cvLoadImage(img_path.c_str()); |
|
if (!image) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
CvLatentSvmDetector* detector = cvLoadLatentSvmDetector(model_path.c_str()); |
|
if (!detector) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
cvReleaseImage(&image); |
|
return; |
|
} |
|
|
|
CvMemStorage* storage = cvCreateMemStorage(0); |
|
CvSeq* detections = 0; |
|
detections = cvLatentSvmDetectObjects(image, detector, storage, 0.5f, numThreads); |
|
if (detections->total != num_detections) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
else |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
for (int i = 0; i < detections->total; i++) |
|
{ |
|
CvObjectDetection detection = *(CvObjectDetection*)cvGetSeqElem( detections, i ); |
|
CvRect bounding_box = detection.rect; |
|
float score = detection.score; |
|
if ((!isEqual(bounding_box, true_bounding_boxes[i], 1)) || (fabs(score - true_scores[i]) > score_thr)) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
break; |
|
} |
|
} |
|
} |
|
#ifdef HAVE_TBB |
|
init.terminate(); |
|
#endif |
|
cvReleaseMemStorage( &storage ); |
|
cvReleaseLatentSvmDetector( &detector ); |
|
cvReleaseImage( &image ); |
|
} |
|
|
|
// Test for c++ version of Latent SVM |
|
|
|
class LatentSVMDetectorTest : public cvtest::BaseTest |
|
{ |
|
protected: |
|
void run(int); |
|
}; |
|
|
|
static void writeDetections( FileStorage& fs, const string& nodeName, const vector<LatentSvmDetector::ObjectDetection>& detections ) |
|
{ |
|
fs << nodeName << "["; |
|
for( size_t i = 0; i < detections.size(); i++ ) |
|
{ |
|
const LatentSvmDetector::ObjectDetection& d = detections[i]; |
|
fs << d.rect.x << d.rect.y << d.rect.width << d.rect.height |
|
<< d.score << d.classID; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
static void readDetections( FileStorage fs, const string& nodeName, vector<LatentSvmDetector::ObjectDetection>& detections ) |
|
{ |
|
detections.clear(); |
|
|
|
FileNode fn = fs.root()[nodeName]; |
|
FileNodeIterator fni = fn.begin(); |
|
while( fni != fn.end() ) |
|
{ |
|
LatentSvmDetector::ObjectDetection d; |
|
fni >> d.rect.x >> d.rect.y >> d.rect.width >> d.rect.height |
|
>> d.score >> d.classID; |
|
detections.push_back( d ); |
|
} |
|
} |
|
|
|
static inline bool isEqual( const LatentSvmDetector::ObjectDetection& d1, const LatentSvmDetector::ObjectDetection& d2, int eps, float threshold) |
|
{ |
|
return ( |
|
std::abs(d1.rect.x - d2.rect.x) <= eps |
|
&& std::abs(d1.rect.y - d2.rect.y) <= eps |
|
&& std::abs(d1.rect.width - d2.rect.width) <= eps |
|
&& std::abs(d1.rect.height - d2.rect.height) <= eps |
|
&& (d1.classID == d2.classID) |
|
&& std::abs(d1.score - d2.score) <= threshold |
|
); |
|
} |
|
|
|
std::ostream& operator << (std::ostream& os, const CvRect& r) |
|
{ |
|
return (os << "[x=" << r.x << ", y=" << r.y << ", w=" << r.width << ", h=" << r.height << "]"); |
|
} |
|
|
|
bool compareResults( const vector<LatentSvmDetector::ObjectDetection>& calc, const vector<LatentSvmDetector::ObjectDetection>& valid, int eps, float threshold) |
|
{ |
|
if( calc.size() != valid.size() ) |
|
return false; |
|
|
|
for( size_t i = 0; i < calc.size(); i++ ) |
|
{ |
|
const LatentSvmDetector::ObjectDetection& c = calc[i]; |
|
const LatentSvmDetector::ObjectDetection& v = valid[i]; |
|
if( !isEqual(c, v, eps, threshold) ) |
|
{ |
|
std::cerr << "Expected: " << v.rect << " class=" << v.classID << " score=" << v.score << std::endl; |
|
std::cerr << "Actual: " << c.rect << " class=" << c.classID << " score=" << c.score << std::endl; |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
void LatentSVMDetectorTest::run( int /* start_from */) |
|
{ |
|
string img_path_cat = string(ts->get_data_path()) + "latentsvmdetector/cat.png"; |
|
string img_path_cars = string(ts->get_data_path()) + "latentsvmdetector/cars.png"; |
|
|
|
string model_path_cat = string(ts->get_data_path()) + "latentsvmdetector/models_VOC2007/cat.xml"; |
|
string model_path_car = string(ts->get_data_path()) + "latentsvmdetector/models_VOC2007/car.xml"; |
|
|
|
string true_res_path = string(ts->get_data_path()) + "latentsvmdetector/results.xml"; |
|
|
|
int numThreads = 1; |
|
|
|
#ifdef HAVE_TBB |
|
numThreads = 2; |
|
#endif |
|
|
|
Mat image_cat = imread( img_path_cat ); |
|
Mat image_cars = imread( img_path_cars ); |
|
if( image_cat.empty() || image_cars.empty() ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
// We will test 2 cases: |
|
// detector1 - to test case of one class 'cat' |
|
// detector12 - to test case of two (several) classes 'cat' and car |
|
|
|
// Load detectors |
|
LatentSvmDetector detector1( vector<string>(1,model_path_cat) ); |
|
|
|
vector<string> models_pathes(2); |
|
models_pathes[0] = model_path_cat; |
|
models_pathes[1] = model_path_car; |
|
LatentSvmDetector detector12( models_pathes ); |
|
|
|
if( detector1.empty() || detector12.empty() || detector12.getClassCount() != 2 ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
return; |
|
} |
|
|
|
// 1. Test method detect |
|
// Run detectors |
|
vector<LatentSvmDetector::ObjectDetection> detections1_cat, detections12_cat, detections12_cars; |
|
detector1.detect( image_cat, detections1_cat, 0.5, numThreads ); |
|
detector12.detect( image_cat, detections12_cat, 0.5, numThreads ); |
|
detector12.detect( image_cars, detections12_cars, 0.5, numThreads ); |
|
|
|
// Load true results |
|
FileStorage fs( true_res_path, FileStorage::READ ); |
|
if( fs.isOpened() ) |
|
{ |
|
vector<LatentSvmDetector::ObjectDetection> true_detections1_cat, true_detections12_cat, true_detections12_cars; |
|
readDetections( fs, "detections1_cat", true_detections1_cat ); |
|
readDetections( fs, "detections12_cat", true_detections12_cat ); |
|
readDetections( fs, "detections12_cars", true_detections12_cars ); |
|
|
|
|
|
if( !compareResults(detections1_cat, true_detections1_cat, 1, score_thr) ) |
|
{ |
|
std::cerr << "Results of detector1 are invalid on image cat.png" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
if( !compareResults(detections12_cat, true_detections12_cat, 1, score_thr) ) |
|
{ |
|
std::cerr << "Results of detector12 are invalid on image cat.png" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
if( !compareResults(detections12_cars, true_detections12_cars, 1, score_thr) ) |
|
{ |
|
std::cerr << "Results of detector12 are invalid on image cars.png" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
} |
|
} |
|
else |
|
{ |
|
fs.open( true_res_path, FileStorage::WRITE ); |
|
if( fs.isOpened() ) |
|
{ |
|
writeDetections( fs, "detections1_cat", detections1_cat ); |
|
writeDetections( fs, "detections12_cat", detections12_cat ); |
|
writeDetections( fs, "detections12_cars", detections12_cars ); |
|
} |
|
else |
|
std::cerr << "File " << true_res_path << " cann't be opened to save test results" << std::endl; |
|
} |
|
|
|
// 2. Simple tests of other methods |
|
if( detector1.getClassCount() != 1 || detector1.getClassNames()[0] != "cat" ) |
|
{ |
|
std::cerr << "Incorrect result of method getClassNames() or getClassCount()" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
detector1.clear(); |
|
if( !detector1.empty() ) |
|
{ |
|
std::cerr << "There is a bug in method clear() or empty()" << std::endl; |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
ts->set_failed_test_info( cvtest::TS::OK); |
|
} |
|
|
|
TEST(Objdetect_LatentSVMDetector_c, DISABLED_regression) { CV_LatentSVMDetectorTest test; test.safe_run(); } |
|
TEST(Objdetect_LatentSVMDetector_cpp, DISABLED_regression) { LatentSVMDetectorTest test; test.safe_run(); }
|
|
|