Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3360 lines
101 KiB

/*
* Copyright (c) 1991-1997 Sam Leffler
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the names of
* Sam Leffler and Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Sam Leffler and Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
/*
* TIFF Library
*
* Read and return a packed RGBA image.
*/
#include "tiffiop.h"
#include <limits.h>
#include <stdio.h>
static int gtTileContig(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t);
static int gtTileSeparate(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t);
static int gtStripContig(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t);
static int gtStripSeparate(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t);
static int PickContigCase(TIFFRGBAImage *);
static int PickSeparateCase(TIFFRGBAImage *);
static int BuildMapUaToAa(TIFFRGBAImage *img);
static int BuildMapBitdepth16To8(TIFFRGBAImage *img);
static const char photoTag[] = "PhotometricInterpretation";
/*
* Helper constants used in Orientation tag handling
*/
#define FLIP_VERTICALLY 0x01
#define FLIP_HORIZONTALLY 0x02
#define EMSG_BUF_SIZE 1024
/*
* Color conversion constants. We will define display types here.
*/
static const TIFFDisplay display_sRGB = {
{/* XYZ -> luminance matrix */
{3.2410F, -1.5374F, -0.4986F},
{-0.9692F, 1.8760F, 0.0416F},
{0.0556F, -0.2040F, 1.0570F}},
100.0F,
100.0F,
100.0F, /* Light o/p for reference white */
255,
255,
255, /* Pixel values for ref. white */
1.0F,
1.0F,
1.0F, /* Residual light o/p for black pixel */
2.4F,
2.4F,
2.4F, /* Gamma values for the three guns */
};
/*
* Check the image to see if TIFFReadRGBAImage can deal with it.
* 1/0 is returned according to whether or not the image can
* be handled. If 0 is returned, emsg contains the reason
* why it is being rejected.
*/
int TIFFRGBAImageOK(TIFF *tif, char emsg[EMSG_BUF_SIZE])
{
TIFFDirectory *td = &tif->tif_dir;
uint16_t photometric;
int colorchannels;
if (!tif->tif_decodestatus)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, requested compression method is not configured");
return (0);
}
switch (td->td_bitspersample)
{
case 1:
case 2:
case 4:
case 8:
case 16:
break;
default:
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle images with %" PRIu16
"-bit samples",
td->td_bitspersample);
return (0);
}
if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP)
{
snprintf(
emsg, EMSG_BUF_SIZE,
"Sorry, can not handle images with IEEE floating-point samples");
return (0);
}
colorchannels = td->td_samplesperpixel - td->td_extrasamples;
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric))
{
switch (colorchannels)
{
case 1:
photometric = PHOTOMETRIC_MINISBLACK;
break;
case 3:
photometric = PHOTOMETRIC_RGB;
break;
default:
snprintf(emsg, EMSG_BUF_SIZE, "Missing needed %s tag",
photoTag);
return (0);
}
}
switch (photometric)
{
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
case PHOTOMETRIC_PALETTE:
if (td->td_planarconfig == PLANARCONFIG_CONTIG &&
td->td_samplesperpixel != 1 && td->td_bitspersample < 8)
{
snprintf(
emsg, EMSG_BUF_SIZE,
"Sorry, can not handle contiguous data with %s=%" PRIu16
", "
"and %s=%" PRIu16 " and Bits/Sample=%" PRIu16 "",
photoTag, photometric, "Samples/pixel",
td->td_samplesperpixel, td->td_bitspersample);
return (0);
}
/*
* We should likely validate that any extra samples are either
* to be ignored, or are alpha, and if alpha we should try to use
* them. But for now we won't bother with this.
*/
break;
case PHOTOMETRIC_YCBCR:
/*
* TODO: if at all meaningful and useful, make more complete
* support check here, or better still, refactor to let supporting
* code decide whether there is support and what meaningful
* error to return
*/
break;
case PHOTOMETRIC_RGB:
if (colorchannels < 3)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle RGB image with %s=%d",
"Color channels", colorchannels);
return (0);
}
break;
case PHOTOMETRIC_SEPARATED:
{
uint16_t inkset;
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
if (inkset != INKSET_CMYK)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle separated image with %s=%d",
"InkSet", inkset);
return 0;
}
if (td->td_samplesperpixel < 4)
{
snprintf(
emsg, EMSG_BUF_SIZE,
"Sorry, can not handle separated image with %s=%" PRIu16,
"Samples/pixel", td->td_samplesperpixel);
return 0;
}
break;
}
case PHOTOMETRIC_LOGL:
if (td->td_compression != COMPRESSION_SGILOG)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, LogL data must have %s=%d", "Compression",
COMPRESSION_SGILOG);
return (0);
}
break;
case PHOTOMETRIC_LOGLUV:
if (td->td_compression != COMPRESSION_SGILOG &&
td->td_compression != COMPRESSION_SGILOG24)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, LogLuv data must have %s=%d or %d",
"Compression", COMPRESSION_SGILOG,
COMPRESSION_SGILOG24);
return (0);
}
if (td->td_planarconfig != PLANARCONFIG_CONTIG)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle LogLuv images with %s=%" PRIu16,
"Planarconfiguration", td->td_planarconfig);
return (0);
}
if (td->td_samplesperpixel != 3 || colorchannels != 3)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle image with %s=%" PRIu16
", %s=%d",
"Samples/pixel", td->td_samplesperpixel,
"colorchannels", colorchannels);
return 0;
}
break;
case PHOTOMETRIC_CIELAB:
if (td->td_samplesperpixel != 3 || colorchannels != 3 ||
(td->td_bitspersample != 8 && td->td_bitspersample != 16))
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle image with %s=%" PRIu16
", %s=%d and %s=%" PRIu16,
"Samples/pixel", td->td_samplesperpixel,
"colorchannels", colorchannels, "Bits/sample",
td->td_bitspersample);
return 0;
}
break;
default:
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle image with %s=%" PRIu16, photoTag,
photometric);
return (0);
}
return (1);
}
void TIFFRGBAImageEnd(TIFFRGBAImage *img)
{
if (img->Map)
{
_TIFFfreeExt(img->tif, img->Map);
img->Map = NULL;
}
if (img->BWmap)
{
_TIFFfreeExt(img->tif, img->BWmap);
img->BWmap = NULL;
}
if (img->PALmap)
{
_TIFFfreeExt(img->tif, img->PALmap);
img->PALmap = NULL;
}
if (img->ycbcr)
{
_TIFFfreeExt(img->tif, img->ycbcr);
img->ycbcr = NULL;
}
if (img->cielab)
{
_TIFFfreeExt(img->tif, img->cielab);
img->cielab = NULL;
}
if (img->UaToAa)
{
_TIFFfreeExt(img->tif, img->UaToAa);
img->UaToAa = NULL;
}
if (img->Bitdepth16To8)
{
_TIFFfreeExt(img->tif, img->Bitdepth16To8);
img->Bitdepth16To8 = NULL;
}
if (img->redcmap)
{
_TIFFfreeExt(img->tif, img->redcmap);
_TIFFfreeExt(img->tif, img->greencmap);
_TIFFfreeExt(img->tif, img->bluecmap);
img->redcmap = img->greencmap = img->bluecmap = NULL;
}
}
static int isCCITTCompression(TIFF *tif)
{
uint16_t compress;
TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
return (compress == COMPRESSION_CCITTFAX3 ||
compress == COMPRESSION_CCITTFAX4 ||
compress == COMPRESSION_CCITTRLE ||
compress == COMPRESSION_CCITTRLEW);
}
int TIFFRGBAImageBegin(TIFFRGBAImage *img, TIFF *tif, int stop,
char emsg[EMSG_BUF_SIZE])
{
uint16_t *sampleinfo;
uint16_t extrasamples;
uint16_t planarconfig;
uint16_t compress;
int colorchannels;
uint16_t *red_orig, *green_orig, *blue_orig;
int n_color;
if (!TIFFRGBAImageOK(tif, emsg))
return 0;
/* Initialize to normal values */
img->row_offset = 0;
img->col_offset = 0;
img->redcmap = NULL;
img->greencmap = NULL;
img->bluecmap = NULL;
img->Map = NULL;
img->BWmap = NULL;
img->PALmap = NULL;
img->ycbcr = NULL;
img->cielab = NULL;
img->UaToAa = NULL;
img->Bitdepth16To8 = NULL;
img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */
img->tif = tif;
img->stoponerr = stop;
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
switch (img->bitspersample)
{
case 1:
case 2:
case 4:
case 8:
case 16:
break;
default:
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle images with %" PRIu16
"-bit samples",
img->bitspersample);
goto fail_return;
}
img->alpha = 0;
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, &extrasamples,
&sampleinfo);
if (extrasamples >= 1)
{
switch (sampleinfo[0])
{
case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without
*/
if (img->samplesperpixel >
3) /* correct info about alpha channel */
img->alpha = EXTRASAMPLE_ASSOCALPHA;
break;
case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */
case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */
img->alpha = sampleinfo[0];
break;
}
}
#ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
img->photometric = PHOTOMETRIC_MINISWHITE;
if (extrasamples == 0 && img->samplesperpixel == 4 &&
img->photometric == PHOTOMETRIC_RGB)
{
img->alpha = EXTRASAMPLE_ASSOCALPHA;
extrasamples = 1;
}
#endif
colorchannels = img->samplesperpixel - extrasamples;
TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
{
switch (colorchannels)
{
case 1:
if (isCCITTCompression(tif))
img->photometric = PHOTOMETRIC_MINISWHITE;
else
img->photometric = PHOTOMETRIC_MINISBLACK;
break;
case 3:
img->photometric = PHOTOMETRIC_RGB;
break;
default:
snprintf(emsg, EMSG_BUF_SIZE, "Missing needed %s tag",
photoTag);
goto fail_return;
}
}
switch (img->photometric)
{
case PHOTOMETRIC_PALETTE:
if (!TIFFGetField(tif, TIFFTAG_COLORMAP, &red_orig, &green_orig,
&blue_orig))
{
snprintf(emsg, EMSG_BUF_SIZE,
"Missing required \"Colormap\" tag");
goto fail_return;
}
/* copy the colormaps so we can modify them */
n_color = (1U << img->bitspersample);
img->redcmap =
(uint16_t *)_TIFFmallocExt(tif, sizeof(uint16_t) * n_color);
img->greencmap =
(uint16_t *)_TIFFmallocExt(tif, sizeof(uint16_t) * n_color);
img->bluecmap =
(uint16_t *)_TIFFmallocExt(tif, sizeof(uint16_t) * n_color);
if (!img->redcmap || !img->greencmap || !img->bluecmap)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Out of memory for colormap copy");
goto fail_return;
}
_TIFFmemcpy(img->redcmap, red_orig, n_color * 2);
_TIFFmemcpy(img->greencmap, green_orig, n_color * 2);
_TIFFmemcpy(img->bluecmap, blue_orig, n_color * 2);
/* fall through... */
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
if (planarconfig == PLANARCONFIG_CONTIG &&
img->samplesperpixel != 1 && img->bitspersample < 8)
{
snprintf(
emsg, EMSG_BUF_SIZE,
"Sorry, can not handle contiguous data with %s=%" PRIu16
", "
"and %s=%" PRIu16 " and Bits/Sample=%" PRIu16,
photoTag, img->photometric, "Samples/pixel",
img->samplesperpixel, img->bitspersample);
goto fail_return;
}
break;
case PHOTOMETRIC_YCBCR:
/* It would probably be nice to have a reality check here. */
if (planarconfig == PLANARCONFIG_CONTIG)
/* can rely on libjpeg to convert to RGB */
/* XXX should restore current state on exit */
switch (compress)
{
case COMPRESSION_JPEG:
/*
* TODO: when complete tests verify complete
* desubsampling and YCbCr handling, remove use of
* TIFFTAG_JPEGCOLORMODE in favor of tif_getimage.c
* native handling
*/
TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE,
JPEGCOLORMODE_RGB);
img->photometric = PHOTOMETRIC_RGB;
break;
default:
/* do nothing */;
break;
}
/*
* TODO: if at all meaningful and useful, make more complete
* support check here, or better still, refactor to let supporting
* code decide whether there is support and what meaningful
* error to return
*/
break;
case PHOTOMETRIC_RGB:
if (colorchannels < 3)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle RGB image with %s=%d",
"Color channels", colorchannels);
goto fail_return;
}
break;
case PHOTOMETRIC_SEPARATED:
{
uint16_t inkset;
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
if (inkset != INKSET_CMYK)
{
snprintf(
emsg, EMSG_BUF_SIZE,
"Sorry, can not handle separated image with %s=%" PRIu16,
"InkSet", inkset);
goto fail_return;
}
if (img->samplesperpixel < 4)
{
snprintf(
emsg, EMSG_BUF_SIZE,
"Sorry, can not handle separated image with %s=%" PRIu16,
"Samples/pixel", img->samplesperpixel);
goto fail_return;
}
}
break;
case PHOTOMETRIC_LOGL:
if (compress != COMPRESSION_SGILOG)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, LogL data must have %s=%d", "Compression",
COMPRESSION_SGILOG);
goto fail_return;
}
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */
img->bitspersample = 8;
break;
case PHOTOMETRIC_LOGLUV:
if (compress != COMPRESSION_SGILOG &&
compress != COMPRESSION_SGILOG24)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, LogLuv data must have %s=%d or %d",
"Compression", COMPRESSION_SGILOG,
COMPRESSION_SGILOG24);
goto fail_return;
}
if (planarconfig != PLANARCONFIG_CONTIG)
{
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle LogLuv images with %s=%" PRIu16,
"Planarconfiguration", planarconfig);
return (0);
}
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
img->photometric = PHOTOMETRIC_RGB; /* little white lie */
img->bitspersample = 8;
break;
case PHOTOMETRIC_CIELAB:
break;
default:
snprintf(emsg, EMSG_BUF_SIZE,
"Sorry, can not handle image with %s=%" PRIu16, photoTag,
img->photometric);
goto fail_return;
}
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
img->isContig =
!(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
if (img->isContig)
{
if (!PickContigCase(img))
{
snprintf(emsg, EMSG_BUF_SIZE, "Sorry, can not handle image");
goto fail_return;
}
}
else
{
if (!PickSeparateCase(img))
{
snprintf(emsg, EMSG_BUF_SIZE, "Sorry, can not handle image");
goto fail_return;
}
}
return 1;
fail_return:
TIFFRGBAImageEnd(img);
return 0;
}
int TIFFRGBAImageGet(TIFFRGBAImage *img, uint32_t *raster, uint32_t w,
uint32_t h)
{
if (img->get == NULL)
{
TIFFErrorExtR(img->tif, TIFFFileName(img->tif),
"No \"get\" routine setup");
return (0);
}
if (img->put.any == NULL)
{
TIFFErrorExtR(
img->tif, TIFFFileName(img->tif),
"No \"put\" routine setupl; probably can not handle image format");
return (0);
}
return (*img->get)(img, raster, w, h);
}
/*
* Read the specified image into an ABGR-format rastertaking in account
* specified orientation.
*/
int TIFFReadRGBAImageOriented(TIFF *tif, uint32_t rwidth, uint32_t rheight,
uint32_t *raster, int orientation, int stop)
{
char emsg[EMSG_BUF_SIZE] = "";
TIFFRGBAImage img;
int ok;
if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg))
{
img.req_orientation = (uint16_t)orientation;
/* XXX verify rwidth and rheight against width and height */
ok = TIFFRGBAImageGet(&img, raster + (rheight - img.height) * rwidth,
rwidth, img.height);
TIFFRGBAImageEnd(&img);
}
else
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", emsg);
ok = 0;
}
return (ok);
}
/*
* Read the specified image into an ABGR-format raster. Use bottom left
* origin for raster by default.
*/
int TIFFReadRGBAImage(TIFF *tif, uint32_t rwidth, uint32_t rheight,
uint32_t *raster, int stop)
{
return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
ORIENTATION_BOTLEFT, stop);
}
static int setorientation(TIFFRGBAImage *img)
{
switch (img->orientation)
{
case ORIENTATION_TOPLEFT:
case ORIENTATION_LEFTTOP:
if (img->req_orientation == ORIENTATION_TOPRIGHT ||
img->req_orientation == ORIENTATION_RIGHTTOP)
return FLIP_HORIZONTALLY;
else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
img->req_orientation == ORIENTATION_RIGHTBOT)
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
else if (img->req_orientation == ORIENTATION_BOTLEFT ||
img->req_orientation == ORIENTATION_LEFTBOT)
return FLIP_VERTICALLY;
else
return 0;
case ORIENTATION_TOPRIGHT:
case ORIENTATION_RIGHTTOP:
if (img->req_orientation == ORIENTATION_TOPLEFT ||
img->req_orientation == ORIENTATION_LEFTTOP)
return FLIP_HORIZONTALLY;
else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
img->req_orientation == ORIENTATION_RIGHTBOT)
return FLIP_VERTICALLY;
else if (img->req_orientation == ORIENTATION_BOTLEFT ||
img->req_orientation == ORIENTATION_LEFTBOT)
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
else
return 0;
case ORIENTATION_BOTRIGHT:
case ORIENTATION_RIGHTBOT:
if (img->req_orientation == ORIENTATION_TOPLEFT ||
img->req_orientation == ORIENTATION_LEFTTOP)
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
img->req_orientation == ORIENTATION_RIGHTTOP)
return FLIP_VERTICALLY;
else if (img->req_orientation == ORIENTATION_BOTLEFT ||
img->req_orientation == ORIENTATION_LEFTBOT)
return FLIP_HORIZONTALLY;
else
return 0;
case ORIENTATION_BOTLEFT:
case ORIENTATION_LEFTBOT:
if (img->req_orientation == ORIENTATION_TOPLEFT ||
img->req_orientation == ORIENTATION_LEFTTOP)
return FLIP_VERTICALLY;
else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
img->req_orientation == ORIENTATION_RIGHTTOP)
return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
img->req_orientation == ORIENTATION_RIGHTBOT)
return FLIP_HORIZONTALLY;
else
return 0;
default: /* NOTREACHED */
return 0;
}
}
/*
* Get an tile-organized image that has
* PlanarConfiguration contiguous if SamplesPerPixel > 1
* or
* SamplesPerPixel == 1
*/
static int gtTileContig(TIFFRGBAImage *img, uint32_t *raster, uint32_t w,
uint32_t h)
{
TIFF *tif = img->tif;
tileContigRoutine put = img->put.contig;
uint32_t col, row, y, rowstoread;
tmsize_t pos;
uint32_t tw, th;
unsigned char *buf = NULL;
int32_t fromskew, toskew;
uint32_t nrow;
int ret = 1, flip;
uint32_t this_tw, tocol;
int32_t this_toskew, leftmost_toskew;
int32_t leftmost_fromskew;
uint32_t leftmost_tw;
tmsize_t bufsize;
bufsize = TIFFTileSize(tif);
if (bufsize == 0)
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", "No space for tile buffer");
return (0);
}
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
flip = setorientation(img);
if (flip & FLIP_VERTICALLY)
{
if ((tw + w) > INT_MAX)
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s",
"unsupported tile size (too wide)");
return (0);
}
y = h - 1;
toskew = -(int32_t)(tw + w);
}
else
{
if (tw > (INT_MAX + w))
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s",
"unsupported tile size (too wide)");
return (0);
}
y = 0;
toskew = -(int32_t)(tw - w);
}
/*
* Leftmost tile is clipped on left side if col_offset > 0.
*/
leftmost_fromskew = img->col_offset % tw;
leftmost_tw = tw - leftmost_fromskew;
leftmost_toskew = toskew + leftmost_fromskew;
for (row = 0; ret != 0 && row < h; row += nrow)
{
rowstoread = th - (row + img->row_offset) % th;
nrow = (row + rowstoread > h ? h - row : rowstoread);
fromskew = leftmost_fromskew;
this_tw = leftmost_tw;
this_toskew = leftmost_toskew;
tocol = 0;
col = img->col_offset;
while (tocol < w)
{
if (_TIFFReadTileAndAllocBuffer(tif, (void **)&buf, bufsize, col,
row + img->row_offset, 0,
0) == (tmsize_t)(-1) &&
(buf == NULL || img->stoponerr))
{
ret = 0;
break;
}
pos = ((row + img->row_offset) % th) * TIFFTileRowSize(tif) +
((tmsize_t)fromskew * img->samplesperpixel);
if (tocol + this_tw > w)
{
/*
* Rightmost tile is clipped on right side.
*/
fromskew = tw - (w - tocol);
this_tw = tw - fromskew;
this_toskew = toskew + fromskew;
}
tmsize_t roffset = (tmsize_t)y * w + tocol;
(*put)(img, raster + roffset, tocol, y, this_tw, nrow, fromskew,
this_toskew, buf + pos);
tocol += this_tw;
col += this_tw;
/*
* After the leftmost tile, tiles are no longer clipped on left
* side.
*/
fromskew = 0;
this_tw = tw;
this_toskew = toskew;
}
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow);
}
_TIFFfreeExt(img->tif, buf);
if (flip & FLIP_HORIZONTALLY)
{
uint32_t line;
for (line = 0; line < h; line++)
{
uint32_t *left = raster + (line * w);
uint32_t *right = left + w - 1;
while (left < right)
{
uint32_t temp = *left;
*left = *right;
*right = temp;
left++;
right--;
}
}
}
return (ret);
}
/*
* Get an tile-organized image that has
* SamplesPerPixel > 1
* PlanarConfiguration separated
* We assume that all such images are RGB.
*/
static int gtTileSeparate(TIFFRGBAImage *img, uint32_t *raster, uint32_t w,
uint32_t h)
{
TIFF *tif = img->tif;
tileSeparateRoutine put = img->put.separate;
uint32_t col, row, y, rowstoread;
tmsize_t pos;
uint32_t tw, th;
unsigned char *buf = NULL;
unsigned char *p0 = NULL;
unsigned char *p1 = NULL;
unsigned char *p2 = NULL;
unsigned char *pa = NULL;
tmsize_t tilesize;
tmsize_t bufsize;
int32_t fromskew, toskew;
int alpha = img->alpha;
uint32_t nrow;
int ret = 1, flip;
uint16_t colorchannels;
uint32_t this_tw, tocol;
int32_t this_toskew, leftmost_toskew;
int32_t leftmost_fromskew;
uint32_t leftmost_tw;
tilesize = TIFFTileSize(tif);
bufsize =
_TIFFMultiplySSize(tif, alpha ? 4 : 3, tilesize, "gtTileSeparate");
if (bufsize == 0)
{
return (0);
}
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
flip = setorientation(img);
if (flip & FLIP_VERTICALLY)
{
if ((tw + w) > INT_MAX)
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s",
"unsupported tile size (too wide)");
return (0);
}
y = h - 1;
toskew = -(int32_t)(tw + w);
}
else
{
if (tw > (INT_MAX + w))
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s",
"unsupported tile size (too wide)");
return (0);
}
y = 0;
toskew = -(int32_t)(tw - w);
}
switch (img->photometric)
{
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
case PHOTOMETRIC_PALETTE:
colorchannels = 1;
break;
default:
colorchannels = 3;
break;
}
/*
* Leftmost tile is clipped on left side if col_offset > 0.
*/
leftmost_fromskew = img->col_offset % tw;
leftmost_tw = tw - leftmost_fromskew;
leftmost_toskew = toskew + leftmost_fromskew;
for (row = 0; ret != 0 && row < h; row += nrow)
{
rowstoread = th - (row + img->row_offset) % th;
nrow = (row + rowstoread > h ? h - row : rowstoread);
fromskew = leftmost_fromskew;
this_tw = leftmost_tw;
this_toskew = leftmost_toskew;
tocol = 0;
col = img->col_offset;
while (tocol < w)
{
if (buf == NULL)
{
if (_TIFFReadTileAndAllocBuffer(tif, (void **)&buf, bufsize,
col, row + img->row_offset, 0,
0) == (tmsize_t)(-1) &&
(buf == NULL || img->stoponerr))
{
ret = 0;
break;
}
p0 = buf;
if (colorchannels == 1)
{
p2 = p1 = p0;
pa = (alpha ? (p0 + 3 * tilesize) : NULL);
}
else
{
p1 = p0 + tilesize;
p2 = p1 + tilesize;
pa = (alpha ? (p2 + tilesize) : NULL);
}
}
else if (TIFFReadTile(tif, p0, col, row + img->row_offset, 0, 0) ==
(tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
if (colorchannels > 1 &&
TIFFReadTile(tif, p1, col, row + img->row_offset, 0, 1) ==
(tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
if (colorchannels > 1 &&
TIFFReadTile(tif, p2, col, row + img->row_offset, 0, 2) ==
(tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
if (alpha &&
TIFFReadTile(tif, pa, col, row + img->row_offset, 0,
colorchannels) == (tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
pos = ((row + img->row_offset) % th) * TIFFTileRowSize(tif) +
((tmsize_t)fromskew * img->samplesperpixel);
if (tocol + this_tw > w)
{
/*
* Rightmost tile is clipped on right side.
*/
fromskew = tw - (w - tocol);
this_tw = tw - fromskew;
this_toskew = toskew + fromskew;
}
tmsize_t roffset = (tmsize_t)y * w + tocol;
(*put)(img, raster + roffset, tocol, y, this_tw, nrow, fromskew,
this_toskew, p0 + pos, p1 + pos, p2 + pos,
(alpha ? (pa + pos) : NULL));
tocol += this_tw;
col += this_tw;
/*
* After the leftmost tile, tiles are no longer clipped on left
* side.
*/
fromskew = 0;
this_tw = tw;
this_toskew = toskew;
}
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow);
}
if (flip & FLIP_HORIZONTALLY)
{
uint32_t line;
for (line = 0; line < h; line++)
{
uint32_t *left = raster + (line * w);
uint32_t *right = left + w - 1;
while (left < right)
{
uint32_t temp = *left;
*left = *right;
*right = temp;
left++;
right--;
}
}
}
_TIFFfreeExt(img->tif, buf);
return (ret);
}
/*
* Get a strip-organized image that has
* PlanarConfiguration contiguous if SamplesPerPixel > 1
* or
* SamplesPerPixel == 1
*/
static int gtStripContig(TIFFRGBAImage *img, uint32_t *raster, uint32_t w,
uint32_t h)
{
TIFF *tif = img->tif;
tileContigRoutine put = img->put.contig;
uint32_t row, y, nrow, nrowsub, rowstoread;
tmsize_t pos;
unsigned char *buf = NULL;
uint32_t rowsperstrip;
uint16_t subsamplinghor, subsamplingver;
uint32_t imagewidth = img->width;
tmsize_t scanline;
int32_t fromskew, toskew;
int ret = 1, flip;
tmsize_t maxstripsize;
TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor,
&subsamplingver);
if (subsamplingver == 0)
{
TIFFErrorExtR(tif, TIFFFileName(tif),
"Invalid vertical YCbCr subsampling");
return (0);
}
maxstripsize = TIFFStripSize(tif);
flip = setorientation(img);
if (flip & FLIP_VERTICALLY)
{
if (w > INT_MAX)
{
TIFFErrorExtR(tif, TIFFFileName(tif), "Width overflow");
return (0);
}
y = h - 1;
toskew = -(int32_t)(w + w);
}
else
{
y = 0;
toskew = -(int32_t)(w - w);
}
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
scanline = TIFFScanlineSize(tif);
fromskew = (w < imagewidth ? imagewidth - w : 0);
for (row = 0; row < h; row += nrow)
{
uint32_t temp;
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
nrow = (row + rowstoread > h ? h - row : rowstoread);
nrowsub = nrow;
if ((nrowsub % subsamplingver) != 0)
nrowsub += subsamplingver - nrowsub % subsamplingver;
temp = (row + img->row_offset) % rowsperstrip + nrowsub;
if (scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline))
{
TIFFErrorExtR(tif, TIFFFileName(tif),
"Integer overflow in gtStripContig");
return 0;
}
if (_TIFFReadEncodedStripAndAllocBuffer(
tif, TIFFComputeStrip(tif, row + img->row_offset, 0),
(void **)(&buf), maxstripsize,
temp * scanline) == (tmsize_t)(-1) &&
(buf == NULL || img->stoponerr))
{
ret = 0;
break;
}
pos = ((row + img->row_offset) % rowsperstrip) * scanline +
((tmsize_t)img->col_offset * img->samplesperpixel);
tmsize_t roffset = (tmsize_t)y * w;
(*put)(img, raster + roffset, 0, y, w, nrow, fromskew, toskew,
buf + pos);
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow);
}
if (flip & FLIP_HORIZONTALLY)
{
uint32_t line;
for (line = 0; line < h; line++)
{
uint32_t *left = raster + (line * w);
uint32_t *right = left + w - 1;
while (left < right)
{
uint32_t temp = *left;
*left = *right;
*right = temp;
left++;
right--;
}
}
}
_TIFFfreeExt(img->tif, buf);
return (ret);
}
/*
* Get a strip-organized image with
* SamplesPerPixel > 1
* PlanarConfiguration separated
* We assume that all such images are RGB.
*/
static int gtStripSeparate(TIFFRGBAImage *img, uint32_t *raster, uint32_t w,
uint32_t h)
{
TIFF *tif = img->tif;
tileSeparateRoutine put = img->put.separate;
unsigned char *buf = NULL;
unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
uint32_t row, y, nrow, rowstoread;
tmsize_t pos;
tmsize_t scanline;
uint32_t rowsperstrip, offset_row;
uint32_t imagewidth = img->width;
tmsize_t stripsize;
tmsize_t bufsize;
int32_t fromskew, toskew;
int alpha = img->alpha;
int ret = 1, flip;
uint16_t colorchannels;
stripsize = TIFFStripSize(tif);
bufsize =
_TIFFMultiplySSize(tif, alpha ? 4 : 3, stripsize, "gtStripSeparate");
if (bufsize == 0)
{
return (0);
}
flip = setorientation(img);
if (flip & FLIP_VERTICALLY)
{
if (w > INT_MAX)
{
TIFFErrorExtR(tif, TIFFFileName(tif), "Width overflow");
return (0);
}
y = h - 1;
toskew = -(int32_t)(w + w);
}
else
{
y = 0;
toskew = -(int32_t)(w - w);
}
switch (img->photometric)
{
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
case PHOTOMETRIC_PALETTE:
colorchannels = 1;
break;
default:
colorchannels = 3;
break;
}
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
scanline = TIFFScanlineSize(tif);
fromskew = (w < imagewidth ? imagewidth - w : 0);
for (row = 0; row < h; row += nrow)
{
uint32_t temp;
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
nrow = (row + rowstoread > h ? h - row : rowstoread);
offset_row = row + img->row_offset;
temp = (row + img->row_offset) % rowsperstrip + nrow;
if (scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline))
{
TIFFErrorExtR(tif, TIFFFileName(tif),
"Integer overflow in gtStripSeparate");
return 0;
}
if (buf == NULL)
{
if (_TIFFReadEncodedStripAndAllocBuffer(
tif, TIFFComputeStrip(tif, offset_row, 0), (void **)&buf,
bufsize, temp * scanline) == (tmsize_t)(-1) &&
(buf == NULL || img->stoponerr))
{
ret = 0;
break;
}
p0 = buf;
if (colorchannels == 1)
{
p2 = p1 = p0;
pa = (alpha ? (p0 + 3 * stripsize) : NULL);
}
else
{
p1 = p0 + stripsize;
p2 = p1 + stripsize;
pa = (alpha ? (p2 + stripsize) : NULL);
}
}
else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
p0, temp * scanline) == (tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
if (colorchannels > 1 &&
TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), p1,
temp * scanline) == (tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
if (colorchannels > 1 &&
TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), p2,
temp * scanline) == (tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
if (alpha)
{
if (TIFFReadEncodedStrip(
tif, TIFFComputeStrip(tif, offset_row, colorchannels), pa,
temp * scanline) == (tmsize_t)(-1) &&
img->stoponerr)
{
ret = 0;
break;
}
}
pos = ((row + img->row_offset) % rowsperstrip) * scanline +
((tmsize_t)img->col_offset * img->samplesperpixel);
tmsize_t roffset = (tmsize_t)y * w;
(*put)(img, raster + roffset, 0, y, w, nrow, fromskew, toskew, p0 + pos,
p1 + pos, p2 + pos, (alpha ? (pa + pos) : NULL));
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow);
}
if (flip & FLIP_HORIZONTALLY)
{
uint32_t line;
for (line = 0; line < h; line++)
{
uint32_t *left = raster + (line * w);
uint32_t *right = left + w - 1;
while (left < right)
{
uint32_t temp = *left;
*left = *right;
*right = temp;
left++;
right--;
}
}
}
_TIFFfreeExt(img->tif, buf);
return (ret);
}
/*
* The following routines move decoded data returned
* from the TIFF library into rasters filled with packed
* ABGR pixels (i.e. suitable for passing to lrecwrite.)
*
* The routines have been created according to the most
* important cases and optimized. PickContigCase and
* PickSeparateCase analyze the parameters and select
* the appropriate "get" and "put" routine to use.
*/
#define REPEAT8(op) \
REPEAT4(op); \
REPEAT4(op)
#define REPEAT4(op) \
REPEAT2(op); \
REPEAT2(op)
#define REPEAT2(op) \
op; \
op
#define CASE8(x, op) \
switch (x) \
{ \
case 7: \
op; /*-fallthrough*/ \
case 6: \
op; /*-fallthrough*/ \
case 5: \
op; /*-fallthrough*/ \
case 4: \
op; /*-fallthrough*/ \
case 3: \
op; /*-fallthrough*/ \
case 2: \
op; /*-fallthrough*/ \
case 1: \
op; \
}
#define CASE4(x, op) \
switch (x) \
{ \
case 3: \
op; /*-fallthrough*/ \
case 2: \
op; /*-fallthrough*/ \
case 1: \
op; \
}
#define NOP
#define UNROLL8(w, op1, op2) \
{ \
uint32_t _x; \
for (_x = w; _x >= 8; _x -= 8) \
{ \
op1; \
REPEAT8(op2); \
} \
if (_x > 0) \
{ \
op1; \
CASE8(_x, op2); \
} \
}
#define UNROLL4(w, op1, op2) \
{ \
uint32_t _x; \
for (_x = w; _x >= 4; _x -= 4) \
{ \
op1; \
REPEAT4(op2); \
} \
if (_x > 0) \
{ \
op1; \
CASE4(_x, op2); \
} \
}
#define UNROLL2(w, op1, op2) \
{ \
uint32_t _x; \
for (_x = w; _x >= 2; _x -= 2) \
{ \
op1; \
REPEAT2(op2); \
} \
if (_x) \
{ \
op1; \
op2; \
} \
}
#define SKEW(r, g, b, skew) \
{ \
r += skew; \
g += skew; \
b += skew; \
}
#define SKEW4(r, g, b, a, skew) \
{ \
r += skew; \
g += skew; \
b += skew; \
a += skew; \
}
#define A1 (((uint32_t)0xffL) << 24)
#define PACK(r, g, b) \
((uint32_t)(r) | ((uint32_t)(g) << 8) | ((uint32_t)(b) << 16) | A1)
#define PACK4(r, g, b, a) \
((uint32_t)(r) | ((uint32_t)(g) << 8) | ((uint32_t)(b) << 16) | \
((uint32_t)(a) << 24))
#define W2B(v) (((v) >> 8) & 0xff)
/* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
#define PACKW(r, g, b) \
((uint32_t)W2B(r) | ((uint32_t)W2B(g) << 8) | ((uint32_t)W2B(b) << 16) | A1)
#define PACKW4(r, g, b, a) \
((uint32_t)W2B(r) | ((uint32_t)W2B(g) << 8) | ((uint32_t)W2B(b) << 16) | \
((uint32_t)W2B(a) << 24))
#define DECLAREContigPutFunc(name) \
static void name(TIFFRGBAImage *img, uint32_t *cp, uint32_t x, uint32_t y, \
uint32_t w, uint32_t h, int32_t fromskew, int32_t toskew, \
unsigned char *pp)
/*
* 8-bit palette => colormap/RGB
*/
DECLAREContigPutFunc(put8bitcmaptile)
{
uint32_t **PALmap = img->PALmap;
int samplesperpixel = img->samplesperpixel;
(void)y;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
*cp++ = PALmap[*pp][0];
pp += samplesperpixel;
}
cp += toskew;
pp += fromskew;
}
}
/*
* 4-bit palette => colormap/RGB
*/
DECLAREContigPutFunc(put4bitcmaptile)
{
uint32_t **PALmap = img->PALmap;
(void)x;
(void)y;
fromskew /= 2;
for (; h > 0; --h)
{
uint32_t *bw;
UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
cp += toskew;
pp += fromskew;
}
}
/*
* 2-bit palette => colormap/RGB
*/
DECLAREContigPutFunc(put2bitcmaptile)
{
uint32_t **PALmap = img->PALmap;
(void)x;
(void)y;
fromskew /= 4;
for (; h > 0; --h)
{
uint32_t *bw;
UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
cp += toskew;
pp += fromskew;
}
}
/*
* 1-bit palette => colormap/RGB
*/
DECLAREContigPutFunc(put1bitcmaptile)
{
uint32_t **PALmap = img->PALmap;
(void)x;
(void)y;
fromskew /= 8;
for (; h > 0; --h)
{
uint32_t *bw;
UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
cp += toskew;
pp += fromskew;
}
}
/*
* 8-bit greyscale => colormap/RGB
*/
DECLAREContigPutFunc(putgreytile)
{
int samplesperpixel = img->samplesperpixel;
uint32_t **BWmap = img->BWmap;
(void)y;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
*cp++ = BWmap[*pp][0];
pp += samplesperpixel;
}
cp += toskew;
pp += fromskew;
}
}
/*
* 8-bit greyscale with associated alpha => colormap/RGBA
*/
DECLAREContigPutFunc(putagreytile)
{
int samplesperpixel = img->samplesperpixel;
uint32_t **BWmap = img->BWmap;
(void)y;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
*cp++ = BWmap[*pp][0] & ((uint32_t) * (pp + 1) << 24 | ~A1);
pp += samplesperpixel;
}
cp += toskew;
pp += fromskew;
}
}
/*
* 16-bit greyscale => colormap/RGB
*/
DECLAREContigPutFunc(put16bitbwtile)
{
int samplesperpixel = img->samplesperpixel;
uint32_t **BWmap = img->BWmap;
(void)y;
for (; h > 0; --h)
{
uint16_t *wp = (uint16_t *)pp;
for (x = w; x > 0; --x)
{
/* use high order byte of 16bit value */
*cp++ = BWmap[*wp >> 8][0];
pp += 2 * samplesperpixel;
wp += samplesperpixel;
}
cp += toskew;
pp += fromskew;
}
}
/*
* 1-bit bilevel => colormap/RGB
*/
DECLAREContigPutFunc(put1bitbwtile)
{
uint32_t **BWmap = img->BWmap;
(void)x;
(void)y;
fromskew /= 8;
for (; h > 0; --h)
{
uint32_t *bw;
UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
cp += toskew;
pp += fromskew;
}
}
/*
* 2-bit greyscale => colormap/RGB
*/
DECLAREContigPutFunc(put2bitbwtile)
{
uint32_t **BWmap = img->BWmap;
(void)x;
(void)y;
fromskew /= 4;
for (; h > 0; --h)
{
uint32_t *bw;
UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
cp += toskew;
pp += fromskew;
}
}
/*
* 4-bit greyscale => colormap/RGB
*/
DECLAREContigPutFunc(put4bitbwtile)
{
uint32_t **BWmap = img->BWmap;
(void)x;
(void)y;
fromskew /= 2;
for (; h > 0; --h)
{
uint32_t *bw;
UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
cp += toskew;
pp += fromskew;
}
}
/*
* 8-bit packed samples, no Map => RGB
*/
DECLAREContigPutFunc(putRGBcontig8bittile)
{
int samplesperpixel = img->samplesperpixel;
(void)x;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
UNROLL8(w, NOP, *cp++ = PACK(pp[0], pp[1], pp[2]);
pp += samplesperpixel);
cp += toskew;
pp += fromskew;
}
}
/*
* 8-bit packed samples => RGBA w/ associated alpha
* (known to have Map == NULL)
*/
DECLAREContigPutFunc(putRGBAAcontig8bittile)
{
int samplesperpixel = img->samplesperpixel;
(void)x;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
UNROLL8(w, NOP, *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
pp += samplesperpixel);
cp += toskew;
pp += fromskew;
}
}
/*
* 8-bit packed samples => RGBA w/ unassociated alpha
* (known to have Map == NULL)
*/
DECLAREContigPutFunc(putRGBUAcontig8bittile)
{
int samplesperpixel = img->samplesperpixel;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
uint32_t r, g, b, a;
uint8_t *m;
for (x = w; x > 0; --x)
{
a = pp[3];
m = img->UaToAa + ((size_t)a << 8);
r = m[pp[0]];
g = m[pp[1]];
b = m[pp[2]];
*cp++ = PACK4(r, g, b, a);
pp += samplesperpixel;
}
cp += toskew;
pp += fromskew;
}
}
/*
* 16-bit packed samples => RGB
*/
DECLAREContigPutFunc(putRGBcontig16bittile)
{
int samplesperpixel = img->samplesperpixel;
uint16_t *wp = (uint16_t *)pp;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
*cp++ = PACK(img->Bitdepth16To8[wp[0]], img->Bitdepth16To8[wp[1]],
img->Bitdepth16To8[wp[2]]);
wp += samplesperpixel;
}
cp += toskew;
wp += fromskew;
}
}
/*
* 16-bit packed samples => RGBA w/ associated alpha
* (known to have Map == NULL)
*/
DECLAREContigPutFunc(putRGBAAcontig16bittile)
{
int samplesperpixel = img->samplesperpixel;
uint16_t *wp = (uint16_t *)pp;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
*cp++ = PACK4(img->Bitdepth16To8[wp[0]], img->Bitdepth16To8[wp[1]],
img->Bitdepth16To8[wp[2]], img->Bitdepth16To8[wp[3]]);
wp += samplesperpixel;
}
cp += toskew;
wp += fromskew;
}
}
/*
* 16-bit packed samples => RGBA w/ unassociated alpha
* (known to have Map == NULL)
*/
DECLAREContigPutFunc(putRGBUAcontig16bittile)
{
int samplesperpixel = img->samplesperpixel;
uint16_t *wp = (uint16_t *)pp;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
uint32_t r, g, b, a;
uint8_t *m;
for (x = w; x > 0; --x)
{
a = img->Bitdepth16To8[wp[3]];
m = img->UaToAa + ((size_t)a << 8);
r = m[img->Bitdepth16To8[wp[0]]];
g = m[img->Bitdepth16To8[wp[1]]];
b = m[img->Bitdepth16To8[wp[2]]];
*cp++ = PACK4(r, g, b, a);
wp += samplesperpixel;
}
cp += toskew;
wp += fromskew;
}
}
/*
* 8-bit packed CMYK samples w/o Map => RGB
*
* NB: The conversion of CMYK->RGB is *very* crude.
*/
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
{
int samplesperpixel = img->samplesperpixel;
uint16_t r, g, b, k;
(void)x;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
UNROLL8(w, NOP, k = 255 - pp[3]; r = (k * (255 - pp[0])) / 255;
g = (k * (255 - pp[1])) / 255; b = (k * (255 - pp[2])) / 255;
*cp++ = PACK(r, g, b); pp += samplesperpixel);
cp += toskew;
pp += fromskew;
}
}
/*
* 8-bit packed CMYK samples w/Map => RGB
*
* NB: The conversion of CMYK->RGB is *very* crude.
*/
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
{
int samplesperpixel = img->samplesperpixel;
TIFFRGBValue *Map = img->Map;
uint16_t r, g, b, k;
(void)y;
fromskew *= samplesperpixel;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
k = 255 - pp[3];
r = (k * (255 - pp[0])) / 255;
g = (k * (255 - pp[1])) / 255;
b = (k * (255 - pp[2])) / 255;
*cp++ = PACK(Map[r], Map[g], Map[b]);
pp += samplesperpixel;
}
pp += fromskew;
cp += toskew;
}
}
#define DECLARESepPutFunc(name) \
static void name(TIFFRGBAImage *img, uint32_t *cp, uint32_t x, uint32_t y, \
uint32_t w, uint32_t h, int32_t fromskew, int32_t toskew, \
unsigned char *r, unsigned char *g, unsigned char *b, \
unsigned char *a)
/*
* 8-bit unpacked samples => RGB
*/
DECLARESepPutFunc(putRGBseparate8bittile)
{
(void)img;
(void)x;
(void)y;
(void)a;
for (; h > 0; --h)
{
UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
SKEW(r, g, b, fromskew);
cp += toskew;
}
}
/*
* 8-bit unpacked samples => RGBA w/ associated alpha
*/
DECLARESepPutFunc(putRGBAAseparate8bittile)
{
(void)img;
(void)x;
(void)y;
for (; h > 0; --h)
{
UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
SKEW4(r, g, b, a, fromskew);
cp += toskew;
}
}
/*
* 8-bit unpacked CMYK samples => RGBA
*/
DECLARESepPutFunc(putCMYKseparate8bittile)
{
(void)img;
(void)y;
for (; h > 0; --h)
{
uint32_t rv, gv, bv, kv;
for (x = w; x > 0; --x)
{
kv = 255 - *a++;
rv = (kv * (255 - *r++)) / 255;
gv = (kv * (255 - *g++)) / 255;
bv = (kv * (255 - *b++)) / 255;
*cp++ = PACK4(rv, gv, bv, 255);
}
SKEW4(r, g, b, a, fromskew);
cp += toskew;
}
}
/*
* 8-bit unpacked samples => RGBA w/ unassociated alpha
*/
DECLARESepPutFunc(putRGBUAseparate8bittile)
{
(void)img;
(void)y;
for (; h > 0; --h)
{
uint32_t rv, gv, bv, av;
uint8_t *m;
for (x = w; x > 0; --x)
{
av = *a++;
m = img->UaToAa + ((size_t)av << 8);
rv = m[*r++];
gv = m[*g++];
bv = m[*b++];
*cp++ = PACK4(rv, gv, bv, av);
}
SKEW4(r, g, b, a, fromskew);
cp += toskew;
}
}
/*
* 16-bit unpacked samples => RGB
*/
DECLARESepPutFunc(putRGBseparate16bittile)
{
uint16_t *wr = (uint16_t *)r;
uint16_t *wg = (uint16_t *)g;
uint16_t *wb = (uint16_t *)b;
(void)img;
(void)y;
(void)a;
for (; h > 0; --h)
{
for (x = 0; x < w; x++)
*cp++ = PACK(img->Bitdepth16To8[*wr++], img->Bitdepth16To8[*wg++],
img->Bitdepth16To8[*wb++]);
SKEW(wr, wg, wb, fromskew);
cp += toskew;
}
}
/*
* 16-bit unpacked samples => RGBA w/ associated alpha
*/
DECLARESepPutFunc(putRGBAAseparate16bittile)
{
uint16_t *wr = (uint16_t *)r;
uint16_t *wg = (uint16_t *)g;
uint16_t *wb = (uint16_t *)b;
uint16_t *wa = (uint16_t *)a;
(void)img;
(void)y;
for (; h > 0; --h)
{
for (x = 0; x < w; x++)
*cp++ = PACK4(img->Bitdepth16To8[*wr++], img->Bitdepth16To8[*wg++],
img->Bitdepth16To8[*wb++], img->Bitdepth16To8[*wa++]);
SKEW4(wr, wg, wb, wa, fromskew);
cp += toskew;
}
}
/*
* 16-bit unpacked samples => RGBA w/ unassociated alpha
*/
DECLARESepPutFunc(putRGBUAseparate16bittile)
{
uint16_t *wr = (uint16_t *)r;
uint16_t *wg = (uint16_t *)g;
uint16_t *wb = (uint16_t *)b;
uint16_t *wa = (uint16_t *)a;
(void)img;
(void)y;
for (; h > 0; --h)
{
uint32_t r2, g2, b2, a2;
uint8_t *m;
for (x = w; x > 0; --x)
{
a2 = img->Bitdepth16To8[*wa++];
m = img->UaToAa + ((size_t)a2 << 8);
r2 = m[img->Bitdepth16To8[*wr++]];
g2 = m[img->Bitdepth16To8[*wg++]];
b2 = m[img->Bitdepth16To8[*wb++]];
*cp++ = PACK4(r2, g2, b2, a2);
}
SKEW4(wr, wg, wb, wa, fromskew);
cp += toskew;
}
}
/*
* 8-bit packed CIE L*a*b 1976 samples => RGB
*/
DECLAREContigPutFunc(putcontig8bitCIELab8)
{
float X, Y, Z;
uint32_t r, g, b;
(void)y;
fromskew *= 3;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
TIFFCIELabToXYZ(img->cielab, (unsigned char)pp[0],
(signed char)pp[1], (signed char)pp[2], &X, &Y, &Z);
TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
*cp++ = PACK(r, g, b);
pp += 3;
}
cp += toskew;
pp += fromskew;
}
}
/*
* 16-bit packed CIE L*a*b 1976 samples => RGB
*/
DECLAREContigPutFunc(putcontig8bitCIELab16)
{
float X, Y, Z;
uint32_t r, g, b;
uint16_t *wp = (uint16_t *)pp;
(void)y;
fromskew *= 3;
for (; h > 0; --h)
{
for (x = w; x > 0; --x)
{
TIFFCIELab16ToXYZ(img->cielab, (uint16_t)wp[0], (int16_t)wp[1],
(int16_t)wp[2], &X, &Y, &Z);
TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
*cp++ = PACK(r, g, b);
wp += 3;
}
cp += toskew;
wp += fromskew;
}
}
/*
* YCbCr -> RGB conversion and packing routines.
*/
#define YCbCrtoRGB(dst, Y) \
{ \
uint32_t r, g, b; \
TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \
dst = PACK(r, g, b); \
}
/*
* 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
{
uint32_t *cp1 = cp + w + toskew;
uint32_t *cp2 = cp1 + w + toskew;
uint32_t *cp3 = cp2 + w + toskew;
int32_t incr = 3 * w + 4 * toskew;
(void)y;
/* adjust fromskew */
fromskew = (fromskew / 4) * (4 * 2 + 2);
if ((h & 3) == 0 && (w & 3) == 0)
{
for (; h >= 4; h -= 4)
{
x = w >> 2;
do
{
int32_t Cb = pp[16];
int32_t Cr = pp[17];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp[1], pp[1]);
YCbCrtoRGB(cp[2], pp[2]);
YCbCrtoRGB(cp[3], pp[3]);
YCbCrtoRGB(cp1[0], pp[4]);
YCbCrtoRGB(cp1[1], pp[5]);
YCbCrtoRGB(cp1[2], pp[6]);
YCbCrtoRGB(cp1[3], pp[7]);
YCbCrtoRGB(cp2[0], pp[8]);
YCbCrtoRGB(cp2[1], pp[9]);
YCbCrtoRGB(cp2[2], pp[10]);
YCbCrtoRGB(cp2[3], pp[11]);
YCbCrtoRGB(cp3[0], pp[12]);
YCbCrtoRGB(cp3[1], pp[13]);
YCbCrtoRGB(cp3[2], pp[14]);
YCbCrtoRGB(cp3[3], pp[15]);
cp += 4;
cp1 += 4;
cp2 += 4;
cp3 += 4;
pp += 18;
} while (--x);
cp += incr;
cp1 += incr;
cp2 += incr;
cp3 += incr;
pp += fromskew;
}
}
else
{
while (h > 0)
{
for (x = w; x > 0;)
{
int32_t Cb = pp[16];
int32_t Cr = pp[17];
switch (x)
{
default:
switch (h)
{
default:
YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
case 3:
YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
case 2:
YCbCrtoRGB(cp1[3], pp[7]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[3], pp[3]); /* FALLTHROUGH */
} /* FALLTHROUGH */
case 3:
switch (h)
{
default:
YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
case 3:
YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
case 2:
YCbCrtoRGB(cp1[2], pp[6]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[2], pp[2]); /* FALLTHROUGH */
} /* FALLTHROUGH */
case 2:
switch (h)
{
default:
YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
case 3:
YCbCrtoRGB(cp2[1], pp[9]); /* FALLTHROUGH */
case 2:
YCbCrtoRGB(cp1[1], pp[5]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[1], pp[1]); /* FALLTHROUGH */
} /* FALLTHROUGH */
case 1:
switch (h)
{
default:
YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
case 3:
YCbCrtoRGB(cp2[0], pp[8]); /* FALLTHROUGH */
case 2:
YCbCrtoRGB(cp1[0], pp[4]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[0], pp[0]); /* FALLTHROUGH */
} /* FALLTHROUGH */
}
if (x < 4)
{
cp += x;
cp1 += x;
cp2 += x;
cp3 += x;
x = 0;
}
else
{
cp += 4;
cp1 += 4;
cp2 += 4;
cp3 += 4;
x -= 4;
}
pp += 18;
}
if (h <= 4)
break;
h -= 4;
cp += incr;
cp1 += incr;
cp2 += incr;
cp3 += incr;
pp += fromskew;
}
}
}
/*
* 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
{
uint32_t *cp1 = cp + w + toskew;
int32_t incr = 2 * toskew + w;
(void)y;
fromskew = (fromskew / 4) * (4 * 2 + 2);
if ((w & 3) == 0 && (h & 1) == 0)
{
for (; h >= 2; h -= 2)
{
x = w >> 2;
do
{
int32_t Cb = pp[8];
int32_t Cr = pp[9];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp[1], pp[1]);
YCbCrtoRGB(cp[2], pp[2]);
YCbCrtoRGB(cp[3], pp[3]);
YCbCrtoRGB(cp1[0], pp[4]);
YCbCrtoRGB(cp1[1], pp[5]);
YCbCrtoRGB(cp1[2], pp[6]);
YCbCrtoRGB(cp1[3], pp[7]);
cp += 4;
cp1 += 4;
pp += 10;
} while (--x);
cp += incr;
cp1 += incr;
pp += fromskew;
}
}
else
{
while (h > 0)
{
for (x = w; x > 0;)
{
int32_t Cb = pp[8];
int32_t Cr = pp[9];
switch (x)
{
default:
switch (h)
{
default:
YCbCrtoRGB(cp1[3], pp[7]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[3], pp[3]); /* FALLTHROUGH */
} /* FALLTHROUGH */
case 3:
switch (h)
{
default:
YCbCrtoRGB(cp1[2], pp[6]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[2], pp[2]); /* FALLTHROUGH */
} /* FALLTHROUGH */
case 2:
switch (h)
{
default:
YCbCrtoRGB(cp1[1], pp[5]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[1], pp[1]); /* FALLTHROUGH */
} /* FALLTHROUGH */
case 1:
switch (h)
{
default:
YCbCrtoRGB(cp1[0], pp[4]); /* FALLTHROUGH */
case 1:
YCbCrtoRGB(cp[0], pp[0]); /* FALLTHROUGH */
} /* FALLTHROUGH */
}
if (x < 4)
{
cp += x;
cp1 += x;
x = 0;
}
else
{
cp += 4;
cp1 += 4;
x -= 4;
}
pp += 10;
}
if (h <= 2)
break;
h -= 2;
cp += incr;
cp1 += incr;
pp += fromskew;
}
}
}
/*
* 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
{
(void)y;
fromskew = (fromskew / 4) * (4 * 1 + 2);
do
{
x = w >> 2;
while (x > 0)
{
int32_t Cb = pp[4];
int32_t Cr = pp[5];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp[1], pp[1]);
YCbCrtoRGB(cp[2], pp[2]);
YCbCrtoRGB(cp[3], pp[3]);
cp += 4;
pp += 6;
x--;
}
if ((w & 3) != 0)
{
int32_t Cb = pp[4];
int32_t Cr = pp[5];
switch ((w & 3))
{
case 3:
YCbCrtoRGB(cp[2], pp[2]); /*-fallthrough*/
case 2:
YCbCrtoRGB(cp[1], pp[1]); /*-fallthrough*/
case 1:
YCbCrtoRGB(cp[0], pp[0]); /*-fallthrough*/
case 0:
break;
}
cp += (w & 3);
pp += 6;
}
cp += toskew;
pp += fromskew;
} while (--h);
}
/*
* 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
{
uint32_t *cp2;
int32_t incr = 2 * toskew + w;
(void)y;
fromskew = (fromskew / 2) * (2 * 2 + 2);
cp2 = cp + w + toskew;
while (h >= 2)
{
x = w;
while (x >= 2)
{
uint32_t Cb = pp[4];
uint32_t Cr = pp[5];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp[1], pp[1]);
YCbCrtoRGB(cp2[0], pp[2]);
YCbCrtoRGB(cp2[1], pp[3]);
cp += 2;
cp2 += 2;
pp += 6;
x -= 2;
}
if (x == 1)
{
uint32_t Cb = pp[4];
uint32_t Cr = pp[5];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp2[0], pp[2]);
cp++;
cp2++;
pp += 6;
}
cp += incr;
cp2 += incr;
pp += fromskew;
h -= 2;
}
if (h == 1)
{
x = w;
while (x >= 2)
{
uint32_t Cb = pp[4];
uint32_t Cr = pp[5];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp[1], pp[1]);
cp += 2;
cp2 += 2;
pp += 6;
x -= 2;
}
if (x == 1)
{
uint32_t Cb = pp[4];
uint32_t Cr = pp[5];
YCbCrtoRGB(cp[0], pp[0]);
}
}
}
/*
* 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
{
(void)y;
fromskew = (fromskew / 2) * (2 * 1 + 2);
do
{
x = w >> 1;
while (x > 0)
{
int32_t Cb = pp[2];
int32_t Cr = pp[3];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp[1], pp[1]);
cp += 2;
pp += 4;
x--;
}
if ((w & 1) != 0)
{
int32_t Cb = pp[2];
int32_t Cr = pp[3];
YCbCrtoRGB(cp[0], pp[0]);
cp += 1;
pp += 4;
}
cp += toskew;
pp += fromskew;
} while (--h);
}
/*
* 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
{
uint32_t *cp2;
int32_t incr = 2 * toskew + w;
(void)y;
fromskew = (fromskew / 1) * (1 * 2 + 2);
cp2 = cp + w + toskew;
while (h >= 2)
{
x = w;
do
{
uint32_t Cb = pp[2];
uint32_t Cr = pp[3];
YCbCrtoRGB(cp[0], pp[0]);
YCbCrtoRGB(cp2[0], pp[1]);
cp++;
cp2++;
pp += 4;
} while (--x);
cp += incr;
cp2 += incr;
pp += fromskew;
h -= 2;
}
if (h == 1)
{
x = w;
do
{
uint32_t Cb = pp[2];
uint32_t Cr = pp[3];
YCbCrtoRGB(cp[0], pp[0]);
cp++;
pp += 4;
} while (--x);
}
}
/*
* 8-bit packed YCbCr samples w/ no subsampling => RGB
*/
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
{
(void)y;
fromskew = (fromskew / 1) * (1 * 1 + 2);
do
{
x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
do
{
int32_t Cb = pp[1];
int32_t Cr = pp[2];
YCbCrtoRGB(*cp++, pp[0]);
pp += 3;
} while (--x);
cp += toskew;
pp += fromskew;
} while (--h);
}
/*
* 8-bit packed YCbCr samples w/ no subsampling => RGB
*/
DECLARESepPutFunc(putseparate8bitYCbCr11tile)
{
(void)y;
(void)a;
/* TODO: naming of input vars is still off, change obfuscating declaration
* inside define, or resolve obfuscation */
for (; h > 0; --h)
{
x = w;
do
{
uint32_t dr, dg, db;
TIFFYCbCrtoRGB(img->ycbcr, *r++, *g++, *b++, &dr, &dg, &db);
*cp++ = PACK(dr, dg, db);
} while (--x);
SKEW(r, g, b, fromskew);
cp += toskew;
}
}
#undef YCbCrtoRGB
static int isInRefBlackWhiteRange(float f)
{
return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
}
static int initYCbCrConversion(TIFFRGBAImage *img)
{
static const char module[] = "initYCbCrConversion";
float *luma, *refBlackWhite;
if (img->ycbcr == NULL)
{
img->ycbcr = (TIFFYCbCrToRGB *)_TIFFmallocExt(
img->tif, TIFFroundup_32(sizeof(TIFFYCbCrToRGB), sizeof(long)) +
4 * 256 * sizeof(TIFFRGBValue) +
2 * 256 * sizeof(int) + 3 * 256 * sizeof(int32_t));
if (img->ycbcr == NULL)
{
TIFFErrorExtR(img->tif, module,
"No space for YCbCr->RGB conversion state");
return (0);
}
}
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
&refBlackWhite);
/* Do some validation to avoid later issues. Detect NaN for now */
/* and also if lumaGreen is zero since we divide by it later */
if (luma[0] != luma[0] || luma[1] != luma[1] || luma[1] == 0.0 ||
luma[2] != luma[2])
{
TIFFErrorExtR(img->tif, module,
"Invalid values for YCbCrCoefficients tag");
return (0);
}
if (!isInRefBlackWhiteRange(refBlackWhite[0]) ||
!isInRefBlackWhiteRange(refBlackWhite[1]) ||
!isInRefBlackWhiteRange(refBlackWhite[2]) ||
!isInRefBlackWhiteRange(refBlackWhite[3]) ||
!isInRefBlackWhiteRange(refBlackWhite[4]) ||
!isInRefBlackWhiteRange(refBlackWhite[5]))
{
TIFFErrorExtR(img->tif, module,
"Invalid values for ReferenceBlackWhite tag");
return (0);
}
if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
return (0);
return (1);
}
static tileContigRoutine initCIELabConversion(TIFFRGBAImage *img)
{
static const char module[] = "initCIELabConversion";
float *whitePoint;
float refWhite[3];
TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
if (whitePoint[1] == 0.0f)
{
TIFFErrorExtR(img->tif, module, "Invalid value for WhitePoint tag.");
return NULL;
}
if (!img->cielab)
{
img->cielab = (TIFFCIELabToRGB *)_TIFFmallocExt(
img->tif, sizeof(TIFFCIELabToRGB));
if (!img->cielab)
{
TIFFErrorExtR(img->tif, module,
"No space for CIE L*a*b*->RGB conversion state.");
return NULL;
}
}
refWhite[1] = 100.0F;
refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
refWhite[2] =
(1.0F - whitePoint[0] - whitePoint[1]) / whitePoint[1] * refWhite[1];
if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0)
{
TIFFErrorExtR(img->tif, module,
"Failed to initialize CIE L*a*b*->RGB conversion state.");
_TIFFfreeExt(img->tif, img->cielab);
return NULL;
}
if (img->bitspersample == 8)
return putcontig8bitCIELab8;
else if (img->bitspersample == 16)
return putcontig8bitCIELab16;
return NULL;
}
/*
* Greyscale images with less than 8 bits/sample are handled
* with a table to avoid lots of shifts and masks. The table
* is setup so that put*bwtile (below) can retrieve 8/bitspersample
* pixel values simply by indexing into the table with one
* number.
*/
static int makebwmap(TIFFRGBAImage *img)
{
TIFFRGBValue *Map = img->Map;
int bitspersample = img->bitspersample;
int nsamples = 8 / bitspersample;
int i;
uint32_t *p;
if (nsamples == 0)
nsamples = 1;
img->BWmap = (uint32_t **)_TIFFmallocExt(
img->tif,
256 * sizeof(uint32_t *) + (256 * nsamples * sizeof(uint32_t)));
if (img->BWmap == NULL)
{
TIFFErrorExtR(img->tif, TIFFFileName(img->tif),
"No space for B&W mapping table");
return (0);
}
p = (uint32_t *)(img->BWmap + 256);
for (i = 0; i < 256; i++)
{
TIFFRGBValue c;
img->BWmap[i] = p;
switch (bitspersample)
{
#define GREY(x) \
c = Map[x]; \
*p++ = PACK(c, c, c);
case 1:
GREY(i >> 7);
GREY((i >> 6) & 1);
GREY((i >> 5) & 1);
GREY((i >> 4) & 1);
GREY((i >> 3) & 1);
GREY((i >> 2) & 1);
GREY((i >> 1) & 1);
GREY(i & 1);
break;
case 2:
GREY(i >> 6);
GREY((i >> 4) & 3);
GREY((i >> 2) & 3);
GREY(i & 3);
break;
case 4:
GREY(i >> 4);
GREY(i & 0xf);
break;
case 8:
case 16:
GREY(i);
break;
}
#undef GREY
}
return (1);
}
/*
* Construct a mapping table to convert from the range
* of the data samples to [0,255] --for display. This
* process also handles inverting B&W images when needed.
*/
static int setupMap(TIFFRGBAImage *img)
{
int32_t x, range;
range = (int32_t)((1L << img->bitspersample) - 1);
/* treat 16 bit the same as eight bit */
if (img->bitspersample == 16)
range = (int32_t)255;
img->Map = (TIFFRGBValue *)_TIFFmallocExt(
img->tif, (range + 1) * sizeof(TIFFRGBValue));
if (img->Map == NULL)
{
TIFFErrorExtR(img->tif, TIFFFileName(img->tif),
"No space for photometric conversion table");
return (0);
}
if (img->photometric == PHOTOMETRIC_MINISWHITE)
{
for (x = 0; x <= range; x++)
img->Map[x] = (TIFFRGBValue)(((range - x) * 255) / range);
}
else
{
for (x = 0; x <= range; x++)
img->Map[x] = (TIFFRGBValue)((x * 255) / range);
}
if (img->bitspersample <= 16 &&
(img->photometric == PHOTOMETRIC_MINISBLACK ||
img->photometric == PHOTOMETRIC_MINISWHITE))
{
/*
* Use photometric mapping table to construct
* unpacking tables for samples <= 8 bits.
*/
if (!makebwmap(img))
return (0);
/* no longer need Map, free it */
_TIFFfreeExt(img->tif, img->Map);
img->Map = NULL;
}
return (1);
}
static int checkcmap(TIFFRGBAImage *img)
{
uint16_t *r = img->redcmap;
uint16_t *g = img->greencmap;
uint16_t *b = img->bluecmap;
long n = 1L << img->bitspersample;
while (n-- > 0)
if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
return (16);
return (8);
}
static void cvtcmap(TIFFRGBAImage *img)
{
uint16_t *r = img->redcmap;
uint16_t *g = img->greencmap;
uint16_t *b = img->bluecmap;
long i;
for (i = (1L << img->bitspersample) - 1; i >= 0; i--)
{
#define CVT(x) ((uint16_t)((x) >> 8))
r[i] = CVT(r[i]);
g[i] = CVT(g[i]);
b[i] = CVT(b[i]);
#undef CVT
}
}
/*
* Palette images with <= 8 bits/sample are handled
* with a table to avoid lots of shifts and masks. The table
* is setup so that put*cmaptile (below) can retrieve 8/bitspersample
* pixel values simply by indexing into the table with one
* number.
*/
static int makecmap(TIFFRGBAImage *img)
{
int bitspersample = img->bitspersample;
int nsamples = 8 / bitspersample;
uint16_t *r = img->redcmap;
uint16_t *g = img->greencmap;
uint16_t *b = img->bluecmap;
uint32_t *p;
int i;
img->PALmap = (uint32_t **)_TIFFmallocExt(
img->tif,
256 * sizeof(uint32_t *) + (256 * nsamples * sizeof(uint32_t)));
if (img->PALmap == NULL)
{
TIFFErrorExtR(img->tif, TIFFFileName(img->tif),
"No space for Palette mapping table");
return (0);
}
p = (uint32_t *)(img->PALmap + 256);
for (i = 0; i < 256; i++)
{
TIFFRGBValue c;
img->PALmap[i] = p;
#define CMAP(x) \
c = (TIFFRGBValue)x; \
*p++ = PACK(r[c] & 0xff, g[c] & 0xff, b[c] & 0xff);
switch (bitspersample)
{
case 1:
CMAP(i >> 7);
CMAP((i >> 6) & 1);
CMAP((i >> 5) & 1);
CMAP((i >> 4) & 1);
CMAP((i >> 3) & 1);
CMAP((i >> 2) & 1);
CMAP((i >> 1) & 1);
CMAP(i & 1);
break;
case 2:
CMAP(i >> 6);
CMAP((i >> 4) & 3);
CMAP((i >> 2) & 3);
CMAP(i & 3);
break;
case 4:
CMAP(i >> 4);
CMAP(i & 0xf);
break;
case 8:
CMAP(i);
break;
}
#undef CMAP
}
return (1);
}
/*
* Construct any mapping table used
* by the associated put routine.
*/
static int buildMap(TIFFRGBAImage *img)
{
switch (img->photometric)
{
case PHOTOMETRIC_RGB:
case PHOTOMETRIC_YCBCR:
case PHOTOMETRIC_SEPARATED:
if (img->bitspersample == 8)
break;
/* fall through... */
case PHOTOMETRIC_MINISBLACK:
case PHOTOMETRIC_MINISWHITE:
if (!setupMap(img))
return (0);
break;
case PHOTOMETRIC_PALETTE:
/*
* Convert 16-bit colormap to 8-bit (unless it looks
* like an old-style 8-bit colormap).
*/
if (checkcmap(img) == 16)
cvtcmap(img);
else
TIFFWarningExtR(img->tif, TIFFFileName(img->tif),
"Assuming 8-bit colormap");
/*
* Use mapping table and colormap to construct
* unpacking tables for samples < 8 bits.
*/
if (img->bitspersample <= 8 && !makecmap(img))
return (0);
break;
}
return (1);
}
/*
* Select the appropriate conversion routine for packed data.
*/
static int PickContigCase(TIFFRGBAImage *img)
{
img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
img->put.contig = NULL;
switch (img->photometric)
{
case PHOTOMETRIC_RGB:
switch (img->bitspersample)
{
case 8:
if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
img->samplesperpixel >= 4)
img->put.contig = putRGBAAcontig8bittile;
else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
img->samplesperpixel >= 4)
{
if (BuildMapUaToAa(img))
img->put.contig = putRGBUAcontig8bittile;
}
else if (img->samplesperpixel >= 3)
img->put.contig = putRGBcontig8bittile;
break;
case 16:
if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
img->samplesperpixel >= 4)
{
if (BuildMapBitdepth16To8(img))
img->put.contig = putRGBAAcontig16bittile;
}
else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
img->samplesperpixel >= 4)
{
if (BuildMapBitdepth16To8(img) && BuildMapUaToAa(img))
img->put.contig = putRGBUAcontig16bittile;
}
else if (img->samplesperpixel >= 3)
{
if (BuildMapBitdepth16To8(img))
img->put.contig = putRGBcontig16bittile;
}
break;
}
break;
case PHOTOMETRIC_SEPARATED:
if (img->samplesperpixel >= 4 && buildMap(img))
{
if (img->bitspersample == 8)
{
if (!img->Map)
img->put.contig = putRGBcontig8bitCMYKtile;
else
img->put.contig = putRGBcontig8bitCMYKMaptile;
}
}
break;
case PHOTOMETRIC_PALETTE:
if (buildMap(img))
{
switch (img->bitspersample)
{
case 8:
img->put.contig = put8bitcmaptile;
break;
case 4:
img->put.contig = put4bitcmaptile;
break;
case 2:
img->put.contig = put2bitcmaptile;
break;
case 1:
img->put.contig = put1bitcmaptile;
break;
}
}
break;
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
if (buildMap(img))
{
switch (img->bitspersample)
{
case 16:
img->put.contig = put16bitbwtile;
break;
case 8:
if (img->alpha && img->samplesperpixel == 2)
img->put.contig = putagreytile;
else
img->put.contig = putgreytile;
break;
case 4:
img->put.contig = put4bitbwtile;
break;
case 2:
img->put.contig = put2bitbwtile;
break;
case 1:
img->put.contig = put1bitbwtile;
break;
}
}
break;
case PHOTOMETRIC_YCBCR:
if ((img->bitspersample == 8) && (img->samplesperpixel == 3))
{
if (initYCbCrConversion(img) != 0)
{
/*
* The 6.0 spec says that subsampling must be
* one of 1, 2, or 4, and that vertical subsampling
* must always be <= horizontal subsampling; so
* there are only a few possibilities and we just
* enumerate the cases.
* Joris: added support for the [1,2] case, nonetheless, to
* accommodate some OJPEG files
*/
uint16_t SubsamplingHor;
uint16_t SubsamplingVer;
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING,
&SubsamplingHor, &SubsamplingVer);
switch ((SubsamplingHor << 4) | SubsamplingVer)
{
case 0x44:
img->put.contig = putcontig8bitYCbCr44tile;
break;
case 0x42:
img->put.contig = putcontig8bitYCbCr42tile;
break;
case 0x41:
img->put.contig = putcontig8bitYCbCr41tile;
break;
case 0x22:
img->put.contig = putcontig8bitYCbCr22tile;
break;
case 0x21:
img->put.contig = putcontig8bitYCbCr21tile;
break;
case 0x12:
img->put.contig = putcontig8bitYCbCr12tile;
break;
case 0x11:
img->put.contig = putcontig8bitYCbCr11tile;
break;
}
}
}
break;
case PHOTOMETRIC_CIELAB:
if (img->samplesperpixel == 3 && buildMap(img))
{
if (img->bitspersample == 8 || img->bitspersample == 16)
img->put.contig = initCIELabConversion(img);
break;
}
}
return ((img->get != NULL) && (img->put.contig != NULL));
}
/*
* Select the appropriate conversion routine for unpacked data.
*
* NB: we assume that unpacked single channel data is directed
* to the "packed routines.
*/
static int PickSeparateCase(TIFFRGBAImage *img)
{
img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
img->put.separate = NULL;
switch (img->photometric)
{
case PHOTOMETRIC_MINISWHITE:
case PHOTOMETRIC_MINISBLACK:
/* greyscale images processed pretty much as RGB by gtTileSeparate
*/
case PHOTOMETRIC_RGB:
switch (img->bitspersample)
{
case 8:
if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
img->put.separate = putRGBAAseparate8bittile;
else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
{
if (BuildMapUaToAa(img))
img->put.separate = putRGBUAseparate8bittile;
}
else
img->put.separate = putRGBseparate8bittile;
break;
case 16:
if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
{
if (BuildMapBitdepth16To8(img))
img->put.separate = putRGBAAseparate16bittile;
}
else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
{
if (BuildMapBitdepth16To8(img) && BuildMapUaToAa(img))
img->put.separate = putRGBUAseparate16bittile;
}
else
{
if (BuildMapBitdepth16To8(img))
img->put.separate = putRGBseparate16bittile;
}
break;
}
break;
case PHOTOMETRIC_SEPARATED:
if (img->bitspersample == 8 && img->samplesperpixel == 4)
{
img->alpha =
1; // Not alpha, but seems like the only way to get 4th band
img->put.separate = putCMYKseparate8bittile;
}
break;
case PHOTOMETRIC_YCBCR:
if ((img->bitspersample == 8) && (img->samplesperpixel == 3))
{
if (initYCbCrConversion(img) != 0)
{
uint16_t hs, vs;
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING,
&hs, &vs);
switch ((hs << 4) | vs)
{
case 0x11:
img->put.separate = putseparate8bitYCbCr11tile;
break;
/* TODO: add other cases here */
}
}
}
break;
}
return ((img->get != NULL) && (img->put.separate != NULL));
}
static int BuildMapUaToAa(TIFFRGBAImage *img)
{
static const char module[] = "BuildMapUaToAa";
uint8_t *m;
uint16_t na, nv;
assert(img->UaToAa == NULL);
img->UaToAa = _TIFFmallocExt(img->tif, 65536);
if (img->UaToAa == NULL)
{
TIFFErrorExtR(img->tif, module, "Out of memory");
return (0);
}
m = img->UaToAa;
for (na = 0; na < 256; na++)
{
for (nv = 0; nv < 256; nv++)
*m++ = (uint8_t)((nv * na + 127) / 255);
}
return (1);
}
static int BuildMapBitdepth16To8(TIFFRGBAImage *img)
{
static const char module[] = "BuildMapBitdepth16To8";
uint8_t *m;
uint32_t n;
assert(img->Bitdepth16To8 == NULL);
img->Bitdepth16To8 = _TIFFmallocExt(img->tif, 65536);
if (img->Bitdepth16To8 == NULL)
{
TIFFErrorExtR(img->tif, module, "Out of memory");
return (0);
}
m = img->Bitdepth16To8;
for (n = 0; n < 65536; n++)
*m++ = (uint8_t)((n + 128) / 257);
return (1);
}
/*
* Read a whole strip off data from the file, and convert to RGBA form.
* If this is the last strip, then it will only contain the portion of
* the strip that is actually within the image space. The result is
* organized in bottom to top form.
*/
int TIFFReadRGBAStrip(TIFF *tif, uint32_t row, uint32_t *raster)
{
return TIFFReadRGBAStripExt(tif, row, raster, 0);
}
int TIFFReadRGBAStripExt(TIFF *tif, uint32_t row, uint32_t *raster,
int stop_on_error)
{
char emsg[EMSG_BUF_SIZE] = "";
TIFFRGBAImage img;
int ok;
uint32_t rowsperstrip, rows_to_read;
if (TIFFIsTiled(tif))
{
TIFFErrorExtR(tif, TIFFFileName(tif),
"Can't use TIFFReadRGBAStrip() with tiled file.");
return (0);
}
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
if ((row % rowsperstrip) != 0)
{
TIFFErrorExtR(
tif, TIFFFileName(tif),
"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
return (0);
}
if (TIFFRGBAImageOK(tif, emsg) &&
TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg))
{
img.row_offset = row;
img.col_offset = 0;
if (row + rowsperstrip > img.height)
rows_to_read = img.height - row;
else
rows_to_read = rowsperstrip;
ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read);
TIFFRGBAImageEnd(&img);
}
else
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", emsg);
ok = 0;
}
return (ok);
}
/*
* Read a whole tile off data from the file, and convert to RGBA form.
* The returned RGBA data is organized from bottom to top of tile,
* and may include zeroed areas if the tile extends off the image.
*/
int TIFFReadRGBATile(TIFF *tif, uint32_t col, uint32_t row, uint32_t *raster)
{
return TIFFReadRGBATileExt(tif, col, row, raster, 0);
}
int TIFFReadRGBATileExt(TIFF *tif, uint32_t col, uint32_t row, uint32_t *raster,
int stop_on_error)
{
char emsg[EMSG_BUF_SIZE] = "";
TIFFRGBAImage img;
int ok;
uint32_t tile_xsize, tile_ysize;
uint32_t read_xsize, read_ysize;
uint32_t i_row;
/*
* Verify that our request is legal - on a tile file, and on a
* tile boundary.
*/
if (!TIFFIsTiled(tif))
{
TIFFErrorExtR(tif, TIFFFileName(tif),
"Can't use TIFFReadRGBATile() with striped file.");
return (0);
}
TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
if ((col % tile_xsize) != 0 || (row % tile_ysize) != 0)
{
TIFFErrorExtR(tif, TIFFFileName(tif),
"Row/col passed to TIFFReadRGBATile() must be top"
"left corner of a tile.");
return (0);
}
/*
* Setup the RGBA reader.
*/
if (!TIFFRGBAImageOK(tif, emsg) ||
!TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg))
{
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", emsg);
return (0);
}
/*
* The TIFFRGBAImageGet() function doesn't allow us to get off the
* edge of the image, even to fill an otherwise valid tile. So we
* figure out how much we can read, and fix up the tile buffer to
* a full tile configuration afterwards.
*/
if (row + tile_ysize > img.height)
read_ysize = img.height - row;
else
read_ysize = tile_ysize;
if (col + tile_xsize > img.width)
read_xsize = img.width - col;
else
read_xsize = tile_xsize;
/*
* Read the chunk of imagery.
*/
img.row_offset = row;
img.col_offset = col;
ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize);
TIFFRGBAImageEnd(&img);
/*
* If our read was incomplete we will need to fix up the tile by
* shifting the data around as if a full tile of data is being returned.
*
* This is all the more complicated because the image is organized in
* bottom to top format.
*/
if (read_xsize == tile_xsize && read_ysize == tile_ysize)
return (ok);
for (i_row = 0; i_row < read_ysize; i_row++)
{
memmove(raster + (size_t)(tile_ysize - i_row - 1) * tile_xsize,
raster + (size_t)(read_ysize - i_row - 1) * read_xsize,
read_xsize * sizeof(uint32_t));
_TIFFmemset(raster + (size_t)(tile_ysize - i_row - 1) * tile_xsize +
read_xsize,
0, sizeof(uint32_t) * (tile_xsize - read_xsize));
}
for (i_row = read_ysize; i_row < tile_ysize; i_row++)
{
_TIFFmemset(raster + (size_t)(tile_ysize - i_row - 1) * tile_xsize, 0,
sizeof(uint32_t) * tile_xsize);
}
return (ok);
}