mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3360 lines
101 KiB
3360 lines
101 KiB
/* |
|
* Copyright (c) 1991-1997 Sam Leffler |
|
* Copyright (c) 1991-1997 Silicon Graphics, Inc. |
|
* |
|
* Permission to use, copy, modify, distribute, and sell this software and |
|
* its documentation for any purpose is hereby granted without fee, provided |
|
* that (i) the above copyright notices and this permission notice appear in |
|
* all copies of the software and related documentation, and (ii) the names of |
|
* Sam Leffler and Silicon Graphics may not be used in any advertising or |
|
* publicity relating to the software without the specific, prior written |
|
* permission of Sam Leffler and Silicon Graphics. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
|
* |
|
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR |
|
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, |
|
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, |
|
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF |
|
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE |
|
* OF THIS SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* TIFF Library |
|
* |
|
* Read and return a packed RGBA image. |
|
*/ |
|
#include "tiffiop.h" |
|
#include <limits.h> |
|
#include <stdio.h> |
|
|
|
static int gtTileContig(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t); |
|
static int gtTileSeparate(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t); |
|
static int gtStripContig(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t); |
|
static int gtStripSeparate(TIFFRGBAImage *, uint32_t *, uint32_t, uint32_t); |
|
static int PickContigCase(TIFFRGBAImage *); |
|
static int PickSeparateCase(TIFFRGBAImage *); |
|
|
|
static int BuildMapUaToAa(TIFFRGBAImage *img); |
|
static int BuildMapBitdepth16To8(TIFFRGBAImage *img); |
|
|
|
static const char photoTag[] = "PhotometricInterpretation"; |
|
|
|
/* |
|
* Helper constants used in Orientation tag handling |
|
*/ |
|
#define FLIP_VERTICALLY 0x01 |
|
#define FLIP_HORIZONTALLY 0x02 |
|
|
|
#define EMSG_BUF_SIZE 1024 |
|
|
|
/* |
|
* Color conversion constants. We will define display types here. |
|
*/ |
|
|
|
static const TIFFDisplay display_sRGB = { |
|
{/* XYZ -> luminance matrix */ |
|
{3.2410F, -1.5374F, -0.4986F}, |
|
{-0.9692F, 1.8760F, 0.0416F}, |
|
{0.0556F, -0.2040F, 1.0570F}}, |
|
100.0F, |
|
100.0F, |
|
100.0F, /* Light o/p for reference white */ |
|
255, |
|
255, |
|
255, /* Pixel values for ref. white */ |
|
1.0F, |
|
1.0F, |
|
1.0F, /* Residual light o/p for black pixel */ |
|
2.4F, |
|
2.4F, |
|
2.4F, /* Gamma values for the three guns */ |
|
}; |
|
|
|
/* |
|
* Check the image to see if TIFFReadRGBAImage can deal with it. |
|
* 1/0 is returned according to whether or not the image can |
|
* be handled. If 0 is returned, emsg contains the reason |
|
* why it is being rejected. |
|
*/ |
|
int TIFFRGBAImageOK(TIFF *tif, char emsg[EMSG_BUF_SIZE]) |
|
{ |
|
TIFFDirectory *td = &tif->tif_dir; |
|
uint16_t photometric; |
|
int colorchannels; |
|
|
|
if (!tif->tif_decodestatus) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, requested compression method is not configured"); |
|
return (0); |
|
} |
|
switch (td->td_bitspersample) |
|
{ |
|
case 1: |
|
case 2: |
|
case 4: |
|
case 8: |
|
case 16: |
|
break; |
|
default: |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle images with %" PRIu16 |
|
"-bit samples", |
|
td->td_bitspersample); |
|
return (0); |
|
} |
|
if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) |
|
{ |
|
snprintf( |
|
emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle images with IEEE floating-point samples"); |
|
return (0); |
|
} |
|
colorchannels = td->td_samplesperpixel - td->td_extrasamples; |
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) |
|
{ |
|
switch (colorchannels) |
|
{ |
|
case 1: |
|
photometric = PHOTOMETRIC_MINISBLACK; |
|
break; |
|
case 3: |
|
photometric = PHOTOMETRIC_RGB; |
|
break; |
|
default: |
|
snprintf(emsg, EMSG_BUF_SIZE, "Missing needed %s tag", |
|
photoTag); |
|
return (0); |
|
} |
|
} |
|
switch (photometric) |
|
{ |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
case PHOTOMETRIC_PALETTE: |
|
if (td->td_planarconfig == PLANARCONFIG_CONTIG && |
|
td->td_samplesperpixel != 1 && td->td_bitspersample < 8) |
|
{ |
|
snprintf( |
|
emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle contiguous data with %s=%" PRIu16 |
|
", " |
|
"and %s=%" PRIu16 " and Bits/Sample=%" PRIu16 "", |
|
photoTag, photometric, "Samples/pixel", |
|
td->td_samplesperpixel, td->td_bitspersample); |
|
return (0); |
|
} |
|
/* |
|
* We should likely validate that any extra samples are either |
|
* to be ignored, or are alpha, and if alpha we should try to use |
|
* them. But for now we won't bother with this. |
|
*/ |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
/* |
|
* TODO: if at all meaningful and useful, make more complete |
|
* support check here, or better still, refactor to let supporting |
|
* code decide whether there is support and what meaningful |
|
* error to return |
|
*/ |
|
break; |
|
case PHOTOMETRIC_RGB: |
|
if (colorchannels < 3) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle RGB image with %s=%d", |
|
"Color channels", colorchannels); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: |
|
{ |
|
uint16_t inkset; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); |
|
if (inkset != INKSET_CMYK) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle separated image with %s=%d", |
|
"InkSet", inkset); |
|
return 0; |
|
} |
|
if (td->td_samplesperpixel < 4) |
|
{ |
|
snprintf( |
|
emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle separated image with %s=%" PRIu16, |
|
"Samples/pixel", td->td_samplesperpixel); |
|
return 0; |
|
} |
|
break; |
|
} |
|
case PHOTOMETRIC_LOGL: |
|
if (td->td_compression != COMPRESSION_SGILOG) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, LogL data must have %s=%d", "Compression", |
|
COMPRESSION_SGILOG); |
|
return (0); |
|
} |
|
break; |
|
case PHOTOMETRIC_LOGLUV: |
|
if (td->td_compression != COMPRESSION_SGILOG && |
|
td->td_compression != COMPRESSION_SGILOG24) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, LogLuv data must have %s=%d or %d", |
|
"Compression", COMPRESSION_SGILOG, |
|
COMPRESSION_SGILOG24); |
|
return (0); |
|
} |
|
if (td->td_planarconfig != PLANARCONFIG_CONTIG) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle LogLuv images with %s=%" PRIu16, |
|
"Planarconfiguration", td->td_planarconfig); |
|
return (0); |
|
} |
|
if (td->td_samplesperpixel != 3 || colorchannels != 3) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle image with %s=%" PRIu16 |
|
", %s=%d", |
|
"Samples/pixel", td->td_samplesperpixel, |
|
"colorchannels", colorchannels); |
|
return 0; |
|
} |
|
break; |
|
case PHOTOMETRIC_CIELAB: |
|
if (td->td_samplesperpixel != 3 || colorchannels != 3 || |
|
(td->td_bitspersample != 8 && td->td_bitspersample != 16)) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle image with %s=%" PRIu16 |
|
", %s=%d and %s=%" PRIu16, |
|
"Samples/pixel", td->td_samplesperpixel, |
|
"colorchannels", colorchannels, "Bits/sample", |
|
td->td_bitspersample); |
|
return 0; |
|
} |
|
break; |
|
default: |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle image with %s=%" PRIu16, photoTag, |
|
photometric); |
|
return (0); |
|
} |
|
return (1); |
|
} |
|
|
|
void TIFFRGBAImageEnd(TIFFRGBAImage *img) |
|
{ |
|
if (img->Map) |
|
{ |
|
_TIFFfreeExt(img->tif, img->Map); |
|
img->Map = NULL; |
|
} |
|
if (img->BWmap) |
|
{ |
|
_TIFFfreeExt(img->tif, img->BWmap); |
|
img->BWmap = NULL; |
|
} |
|
if (img->PALmap) |
|
{ |
|
_TIFFfreeExt(img->tif, img->PALmap); |
|
img->PALmap = NULL; |
|
} |
|
if (img->ycbcr) |
|
{ |
|
_TIFFfreeExt(img->tif, img->ycbcr); |
|
img->ycbcr = NULL; |
|
} |
|
if (img->cielab) |
|
{ |
|
_TIFFfreeExt(img->tif, img->cielab); |
|
img->cielab = NULL; |
|
} |
|
if (img->UaToAa) |
|
{ |
|
_TIFFfreeExt(img->tif, img->UaToAa); |
|
img->UaToAa = NULL; |
|
} |
|
if (img->Bitdepth16To8) |
|
{ |
|
_TIFFfreeExt(img->tif, img->Bitdepth16To8); |
|
img->Bitdepth16To8 = NULL; |
|
} |
|
|
|
if (img->redcmap) |
|
{ |
|
_TIFFfreeExt(img->tif, img->redcmap); |
|
_TIFFfreeExt(img->tif, img->greencmap); |
|
_TIFFfreeExt(img->tif, img->bluecmap); |
|
img->redcmap = img->greencmap = img->bluecmap = NULL; |
|
} |
|
} |
|
|
|
static int isCCITTCompression(TIFF *tif) |
|
{ |
|
uint16_t compress; |
|
TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); |
|
return (compress == COMPRESSION_CCITTFAX3 || |
|
compress == COMPRESSION_CCITTFAX4 || |
|
compress == COMPRESSION_CCITTRLE || |
|
compress == COMPRESSION_CCITTRLEW); |
|
} |
|
|
|
int TIFFRGBAImageBegin(TIFFRGBAImage *img, TIFF *tif, int stop, |
|
char emsg[EMSG_BUF_SIZE]) |
|
{ |
|
uint16_t *sampleinfo; |
|
uint16_t extrasamples; |
|
uint16_t planarconfig; |
|
uint16_t compress; |
|
int colorchannels; |
|
uint16_t *red_orig, *green_orig, *blue_orig; |
|
int n_color; |
|
|
|
if (!TIFFRGBAImageOK(tif, emsg)) |
|
return 0; |
|
|
|
/* Initialize to normal values */ |
|
img->row_offset = 0; |
|
img->col_offset = 0; |
|
img->redcmap = NULL; |
|
img->greencmap = NULL; |
|
img->bluecmap = NULL; |
|
img->Map = NULL; |
|
img->BWmap = NULL; |
|
img->PALmap = NULL; |
|
img->ycbcr = NULL; |
|
img->cielab = NULL; |
|
img->UaToAa = NULL; |
|
img->Bitdepth16To8 = NULL; |
|
img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ |
|
|
|
img->tif = tif; |
|
img->stoponerr = stop; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); |
|
switch (img->bitspersample) |
|
{ |
|
case 1: |
|
case 2: |
|
case 4: |
|
case 8: |
|
case 16: |
|
break; |
|
default: |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle images with %" PRIu16 |
|
"-bit samples", |
|
img->bitspersample); |
|
goto fail_return; |
|
} |
|
img->alpha = 0; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, &extrasamples, |
|
&sampleinfo); |
|
if (extrasamples >= 1) |
|
{ |
|
switch (sampleinfo[0]) |
|
{ |
|
case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without |
|
*/ |
|
if (img->samplesperpixel > |
|
3) /* correct info about alpha channel */ |
|
img->alpha = EXTRASAMPLE_ASSOCALPHA; |
|
break; |
|
case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ |
|
case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ |
|
img->alpha = sampleinfo[0]; |
|
break; |
|
} |
|
} |
|
|
|
#ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA |
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) |
|
img->photometric = PHOTOMETRIC_MINISWHITE; |
|
|
|
if (extrasamples == 0 && img->samplesperpixel == 4 && |
|
img->photometric == PHOTOMETRIC_RGB) |
|
{ |
|
img->alpha = EXTRASAMPLE_ASSOCALPHA; |
|
extrasamples = 1; |
|
} |
|
#endif |
|
|
|
colorchannels = img->samplesperpixel - extrasamples; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); |
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) |
|
{ |
|
switch (colorchannels) |
|
{ |
|
case 1: |
|
if (isCCITTCompression(tif)) |
|
img->photometric = PHOTOMETRIC_MINISWHITE; |
|
else |
|
img->photometric = PHOTOMETRIC_MINISBLACK; |
|
break; |
|
case 3: |
|
img->photometric = PHOTOMETRIC_RGB; |
|
break; |
|
default: |
|
snprintf(emsg, EMSG_BUF_SIZE, "Missing needed %s tag", |
|
photoTag); |
|
goto fail_return; |
|
} |
|
} |
|
switch (img->photometric) |
|
{ |
|
case PHOTOMETRIC_PALETTE: |
|
if (!TIFFGetField(tif, TIFFTAG_COLORMAP, &red_orig, &green_orig, |
|
&blue_orig)) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Missing required \"Colormap\" tag"); |
|
goto fail_return; |
|
} |
|
|
|
/* copy the colormaps so we can modify them */ |
|
n_color = (1U << img->bitspersample); |
|
img->redcmap = |
|
(uint16_t *)_TIFFmallocExt(tif, sizeof(uint16_t) * n_color); |
|
img->greencmap = |
|
(uint16_t *)_TIFFmallocExt(tif, sizeof(uint16_t) * n_color); |
|
img->bluecmap = |
|
(uint16_t *)_TIFFmallocExt(tif, sizeof(uint16_t) * n_color); |
|
if (!img->redcmap || !img->greencmap || !img->bluecmap) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Out of memory for colormap copy"); |
|
goto fail_return; |
|
} |
|
|
|
_TIFFmemcpy(img->redcmap, red_orig, n_color * 2); |
|
_TIFFmemcpy(img->greencmap, green_orig, n_color * 2); |
|
_TIFFmemcpy(img->bluecmap, blue_orig, n_color * 2); |
|
|
|
/* fall through... */ |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
if (planarconfig == PLANARCONFIG_CONTIG && |
|
img->samplesperpixel != 1 && img->bitspersample < 8) |
|
{ |
|
snprintf( |
|
emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle contiguous data with %s=%" PRIu16 |
|
", " |
|
"and %s=%" PRIu16 " and Bits/Sample=%" PRIu16, |
|
photoTag, img->photometric, "Samples/pixel", |
|
img->samplesperpixel, img->bitspersample); |
|
goto fail_return; |
|
} |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
/* It would probably be nice to have a reality check here. */ |
|
if (planarconfig == PLANARCONFIG_CONTIG) |
|
/* can rely on libjpeg to convert to RGB */ |
|
/* XXX should restore current state on exit */ |
|
switch (compress) |
|
{ |
|
case COMPRESSION_JPEG: |
|
/* |
|
* TODO: when complete tests verify complete |
|
* desubsampling and YCbCr handling, remove use of |
|
* TIFFTAG_JPEGCOLORMODE in favor of tif_getimage.c |
|
* native handling |
|
*/ |
|
TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, |
|
JPEGCOLORMODE_RGB); |
|
img->photometric = PHOTOMETRIC_RGB; |
|
break; |
|
default: |
|
/* do nothing */; |
|
break; |
|
} |
|
/* |
|
* TODO: if at all meaningful and useful, make more complete |
|
* support check here, or better still, refactor to let supporting |
|
* code decide whether there is support and what meaningful |
|
* error to return |
|
*/ |
|
break; |
|
case PHOTOMETRIC_RGB: |
|
if (colorchannels < 3) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle RGB image with %s=%d", |
|
"Color channels", colorchannels); |
|
goto fail_return; |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: |
|
{ |
|
uint16_t inkset; |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); |
|
if (inkset != INKSET_CMYK) |
|
{ |
|
snprintf( |
|
emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle separated image with %s=%" PRIu16, |
|
"InkSet", inkset); |
|
goto fail_return; |
|
} |
|
if (img->samplesperpixel < 4) |
|
{ |
|
snprintf( |
|
emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle separated image with %s=%" PRIu16, |
|
"Samples/pixel", img->samplesperpixel); |
|
goto fail_return; |
|
} |
|
} |
|
break; |
|
case PHOTOMETRIC_LOGL: |
|
if (compress != COMPRESSION_SGILOG) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, LogL data must have %s=%d", "Compression", |
|
COMPRESSION_SGILOG); |
|
goto fail_return; |
|
} |
|
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); |
|
img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ |
|
img->bitspersample = 8; |
|
break; |
|
case PHOTOMETRIC_LOGLUV: |
|
if (compress != COMPRESSION_SGILOG && |
|
compress != COMPRESSION_SGILOG24) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, LogLuv data must have %s=%d or %d", |
|
"Compression", COMPRESSION_SGILOG, |
|
COMPRESSION_SGILOG24); |
|
goto fail_return; |
|
} |
|
if (planarconfig != PLANARCONFIG_CONTIG) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle LogLuv images with %s=%" PRIu16, |
|
"Planarconfiguration", planarconfig); |
|
return (0); |
|
} |
|
TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); |
|
img->photometric = PHOTOMETRIC_RGB; /* little white lie */ |
|
img->bitspersample = 8; |
|
break; |
|
case PHOTOMETRIC_CIELAB: |
|
break; |
|
default: |
|
snprintf(emsg, EMSG_BUF_SIZE, |
|
"Sorry, can not handle image with %s=%" PRIu16, photoTag, |
|
img->photometric); |
|
goto fail_return; |
|
} |
|
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); |
|
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); |
|
img->isContig = |
|
!(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1); |
|
if (img->isContig) |
|
{ |
|
if (!PickContigCase(img)) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, "Sorry, can not handle image"); |
|
goto fail_return; |
|
} |
|
} |
|
else |
|
{ |
|
if (!PickSeparateCase(img)) |
|
{ |
|
snprintf(emsg, EMSG_BUF_SIZE, "Sorry, can not handle image"); |
|
goto fail_return; |
|
} |
|
} |
|
return 1; |
|
|
|
fail_return: |
|
TIFFRGBAImageEnd(img); |
|
return 0; |
|
} |
|
|
|
int TIFFRGBAImageGet(TIFFRGBAImage *img, uint32_t *raster, uint32_t w, |
|
uint32_t h) |
|
{ |
|
if (img->get == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, TIFFFileName(img->tif), |
|
"No \"get\" routine setup"); |
|
return (0); |
|
} |
|
if (img->put.any == NULL) |
|
{ |
|
TIFFErrorExtR( |
|
img->tif, TIFFFileName(img->tif), |
|
"No \"put\" routine setupl; probably can not handle image format"); |
|
return (0); |
|
} |
|
return (*img->get)(img, raster, w, h); |
|
} |
|
|
|
/* |
|
* Read the specified image into an ABGR-format rastertaking in account |
|
* specified orientation. |
|
*/ |
|
int TIFFReadRGBAImageOriented(TIFF *tif, uint32_t rwidth, uint32_t rheight, |
|
uint32_t *raster, int orientation, int stop) |
|
{ |
|
char emsg[EMSG_BUF_SIZE] = ""; |
|
TIFFRGBAImage img; |
|
int ok; |
|
|
|
if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) |
|
{ |
|
img.req_orientation = (uint16_t)orientation; |
|
/* XXX verify rwidth and rheight against width and height */ |
|
ok = TIFFRGBAImageGet(&img, raster + (rheight - img.height) * rwidth, |
|
rwidth, img.height); |
|
TIFFRGBAImageEnd(&img); |
|
} |
|
else |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", emsg); |
|
ok = 0; |
|
} |
|
return (ok); |
|
} |
|
|
|
/* |
|
* Read the specified image into an ABGR-format raster. Use bottom left |
|
* origin for raster by default. |
|
*/ |
|
int TIFFReadRGBAImage(TIFF *tif, uint32_t rwidth, uint32_t rheight, |
|
uint32_t *raster, int stop) |
|
{ |
|
return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, |
|
ORIENTATION_BOTLEFT, stop); |
|
} |
|
|
|
static int setorientation(TIFFRGBAImage *img) |
|
{ |
|
switch (img->orientation) |
|
{ |
|
case ORIENTATION_TOPLEFT: |
|
case ORIENTATION_LEFTTOP: |
|
if (img->req_orientation == ORIENTATION_TOPRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTTOP) |
|
return FLIP_HORIZONTALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTBOT) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTLEFT || |
|
img->req_orientation == ORIENTATION_LEFTBOT) |
|
return FLIP_VERTICALLY; |
|
else |
|
return 0; |
|
case ORIENTATION_TOPRIGHT: |
|
case ORIENTATION_RIGHTTOP: |
|
if (img->req_orientation == ORIENTATION_TOPLEFT || |
|
img->req_orientation == ORIENTATION_LEFTTOP) |
|
return FLIP_HORIZONTALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTBOT) |
|
return FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTLEFT || |
|
img->req_orientation == ORIENTATION_LEFTBOT) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else |
|
return 0; |
|
case ORIENTATION_BOTRIGHT: |
|
case ORIENTATION_RIGHTBOT: |
|
if (img->req_orientation == ORIENTATION_TOPLEFT || |
|
img->req_orientation == ORIENTATION_LEFTTOP) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_TOPRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTTOP) |
|
return FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTLEFT || |
|
img->req_orientation == ORIENTATION_LEFTBOT) |
|
return FLIP_HORIZONTALLY; |
|
else |
|
return 0; |
|
case ORIENTATION_BOTLEFT: |
|
case ORIENTATION_LEFTBOT: |
|
if (img->req_orientation == ORIENTATION_TOPLEFT || |
|
img->req_orientation == ORIENTATION_LEFTTOP) |
|
return FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_TOPRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTTOP) |
|
return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
|
else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
|
img->req_orientation == ORIENTATION_RIGHTBOT) |
|
return FLIP_HORIZONTALLY; |
|
else |
|
return 0; |
|
default: /* NOTREACHED */ |
|
return 0; |
|
} |
|
} |
|
|
|
/* |
|
* Get an tile-organized image that has |
|
* PlanarConfiguration contiguous if SamplesPerPixel > 1 |
|
* or |
|
* SamplesPerPixel == 1 |
|
*/ |
|
static int gtTileContig(TIFFRGBAImage *img, uint32_t *raster, uint32_t w, |
|
uint32_t h) |
|
{ |
|
TIFF *tif = img->tif; |
|
tileContigRoutine put = img->put.contig; |
|
uint32_t col, row, y, rowstoread; |
|
tmsize_t pos; |
|
uint32_t tw, th; |
|
unsigned char *buf = NULL; |
|
int32_t fromskew, toskew; |
|
uint32_t nrow; |
|
int ret = 1, flip; |
|
uint32_t this_tw, tocol; |
|
int32_t this_toskew, leftmost_toskew; |
|
int32_t leftmost_fromskew; |
|
uint32_t leftmost_tw; |
|
tmsize_t bufsize; |
|
|
|
bufsize = TIFFTileSize(tif); |
|
if (bufsize == 0) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", "No space for tile buffer"); |
|
return (0); |
|
} |
|
|
|
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); |
|
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) |
|
{ |
|
if ((tw + w) > INT_MAX) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", |
|
"unsupported tile size (too wide)"); |
|
return (0); |
|
} |
|
y = h - 1; |
|
toskew = -(int32_t)(tw + w); |
|
} |
|
else |
|
{ |
|
if (tw > (INT_MAX + w)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", |
|
"unsupported tile size (too wide)"); |
|
return (0); |
|
} |
|
y = 0; |
|
toskew = -(int32_t)(tw - w); |
|
} |
|
|
|
/* |
|
* Leftmost tile is clipped on left side if col_offset > 0. |
|
*/ |
|
leftmost_fromskew = img->col_offset % tw; |
|
leftmost_tw = tw - leftmost_fromskew; |
|
leftmost_toskew = toskew + leftmost_fromskew; |
|
for (row = 0; ret != 0 && row < h; row += nrow) |
|
{ |
|
rowstoread = th - (row + img->row_offset) % th; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
fromskew = leftmost_fromskew; |
|
this_tw = leftmost_tw; |
|
this_toskew = leftmost_toskew; |
|
tocol = 0; |
|
col = img->col_offset; |
|
while (tocol < w) |
|
{ |
|
if (_TIFFReadTileAndAllocBuffer(tif, (void **)&buf, bufsize, col, |
|
row + img->row_offset, 0, |
|
0) == (tmsize_t)(-1) && |
|
(buf == NULL || img->stoponerr)) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
pos = ((row + img->row_offset) % th) * TIFFTileRowSize(tif) + |
|
((tmsize_t)fromskew * img->samplesperpixel); |
|
if (tocol + this_tw > w) |
|
{ |
|
/* |
|
* Rightmost tile is clipped on right side. |
|
*/ |
|
fromskew = tw - (w - tocol); |
|
this_tw = tw - fromskew; |
|
this_toskew = toskew + fromskew; |
|
} |
|
tmsize_t roffset = (tmsize_t)y * w + tocol; |
|
(*put)(img, raster + roffset, tocol, y, this_tw, nrow, fromskew, |
|
this_toskew, buf + pos); |
|
tocol += this_tw; |
|
col += this_tw; |
|
/* |
|
* After the leftmost tile, tiles are no longer clipped on left |
|
* side. |
|
*/ |
|
fromskew = 0; |
|
this_tw = tw; |
|
this_toskew = toskew; |
|
} |
|
|
|
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow); |
|
} |
|
_TIFFfreeExt(img->tif, buf); |
|
|
|
if (flip & FLIP_HORIZONTALLY) |
|
{ |
|
uint32_t line; |
|
|
|
for (line = 0; line < h; line++) |
|
{ |
|
uint32_t *left = raster + (line * w); |
|
uint32_t *right = left + w - 1; |
|
|
|
while (left < right) |
|
{ |
|
uint32_t temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++; |
|
right--; |
|
} |
|
} |
|
} |
|
|
|
return (ret); |
|
} |
|
|
|
/* |
|
* Get an tile-organized image that has |
|
* SamplesPerPixel > 1 |
|
* PlanarConfiguration separated |
|
* We assume that all such images are RGB. |
|
*/ |
|
static int gtTileSeparate(TIFFRGBAImage *img, uint32_t *raster, uint32_t w, |
|
uint32_t h) |
|
{ |
|
TIFF *tif = img->tif; |
|
tileSeparateRoutine put = img->put.separate; |
|
uint32_t col, row, y, rowstoread; |
|
tmsize_t pos; |
|
uint32_t tw, th; |
|
unsigned char *buf = NULL; |
|
unsigned char *p0 = NULL; |
|
unsigned char *p1 = NULL; |
|
unsigned char *p2 = NULL; |
|
unsigned char *pa = NULL; |
|
tmsize_t tilesize; |
|
tmsize_t bufsize; |
|
int32_t fromskew, toskew; |
|
int alpha = img->alpha; |
|
uint32_t nrow; |
|
int ret = 1, flip; |
|
uint16_t colorchannels; |
|
uint32_t this_tw, tocol; |
|
int32_t this_toskew, leftmost_toskew; |
|
int32_t leftmost_fromskew; |
|
uint32_t leftmost_tw; |
|
|
|
tilesize = TIFFTileSize(tif); |
|
bufsize = |
|
_TIFFMultiplySSize(tif, alpha ? 4 : 3, tilesize, "gtTileSeparate"); |
|
if (bufsize == 0) |
|
{ |
|
return (0); |
|
} |
|
|
|
TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); |
|
TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) |
|
{ |
|
if ((tw + w) > INT_MAX) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", |
|
"unsupported tile size (too wide)"); |
|
return (0); |
|
} |
|
y = h - 1; |
|
toskew = -(int32_t)(tw + w); |
|
} |
|
else |
|
{ |
|
if (tw > (INT_MAX + w)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", |
|
"unsupported tile size (too wide)"); |
|
return (0); |
|
} |
|
y = 0; |
|
toskew = -(int32_t)(tw - w); |
|
} |
|
|
|
switch (img->photometric) |
|
{ |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
case PHOTOMETRIC_PALETTE: |
|
colorchannels = 1; |
|
break; |
|
|
|
default: |
|
colorchannels = 3; |
|
break; |
|
} |
|
|
|
/* |
|
* Leftmost tile is clipped on left side if col_offset > 0. |
|
*/ |
|
leftmost_fromskew = img->col_offset % tw; |
|
leftmost_tw = tw - leftmost_fromskew; |
|
leftmost_toskew = toskew + leftmost_fromskew; |
|
for (row = 0; ret != 0 && row < h; row += nrow) |
|
{ |
|
rowstoread = th - (row + img->row_offset) % th; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
fromskew = leftmost_fromskew; |
|
this_tw = leftmost_tw; |
|
this_toskew = leftmost_toskew; |
|
tocol = 0; |
|
col = img->col_offset; |
|
while (tocol < w) |
|
{ |
|
if (buf == NULL) |
|
{ |
|
if (_TIFFReadTileAndAllocBuffer(tif, (void **)&buf, bufsize, |
|
col, row + img->row_offset, 0, |
|
0) == (tmsize_t)(-1) && |
|
(buf == NULL || img->stoponerr)) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
p0 = buf; |
|
if (colorchannels == 1) |
|
{ |
|
p2 = p1 = p0; |
|
pa = (alpha ? (p0 + 3 * tilesize) : NULL); |
|
} |
|
else |
|
{ |
|
p1 = p0 + tilesize; |
|
p2 = p1 + tilesize; |
|
pa = (alpha ? (p2 + tilesize) : NULL); |
|
} |
|
} |
|
else if (TIFFReadTile(tif, p0, col, row + img->row_offset, 0, 0) == |
|
(tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (colorchannels > 1 && |
|
TIFFReadTile(tif, p1, col, row + img->row_offset, 0, 1) == |
|
(tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (colorchannels > 1 && |
|
TIFFReadTile(tif, p2, col, row + img->row_offset, 0, 2) == |
|
(tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (alpha && |
|
TIFFReadTile(tif, pa, col, row + img->row_offset, 0, |
|
colorchannels) == (tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
pos = ((row + img->row_offset) % th) * TIFFTileRowSize(tif) + |
|
((tmsize_t)fromskew * img->samplesperpixel); |
|
if (tocol + this_tw > w) |
|
{ |
|
/* |
|
* Rightmost tile is clipped on right side. |
|
*/ |
|
fromskew = tw - (w - tocol); |
|
this_tw = tw - fromskew; |
|
this_toskew = toskew + fromskew; |
|
} |
|
tmsize_t roffset = (tmsize_t)y * w + tocol; |
|
(*put)(img, raster + roffset, tocol, y, this_tw, nrow, fromskew, |
|
this_toskew, p0 + pos, p1 + pos, p2 + pos, |
|
(alpha ? (pa + pos) : NULL)); |
|
tocol += this_tw; |
|
col += this_tw; |
|
/* |
|
* After the leftmost tile, tiles are no longer clipped on left |
|
* side. |
|
*/ |
|
fromskew = 0; |
|
this_tw = tw; |
|
this_toskew = toskew; |
|
} |
|
|
|
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow); |
|
} |
|
|
|
if (flip & FLIP_HORIZONTALLY) |
|
{ |
|
uint32_t line; |
|
|
|
for (line = 0; line < h; line++) |
|
{ |
|
uint32_t *left = raster + (line * w); |
|
uint32_t *right = left + w - 1; |
|
|
|
while (left < right) |
|
{ |
|
uint32_t temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++; |
|
right--; |
|
} |
|
} |
|
} |
|
|
|
_TIFFfreeExt(img->tif, buf); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* Get a strip-organized image that has |
|
* PlanarConfiguration contiguous if SamplesPerPixel > 1 |
|
* or |
|
* SamplesPerPixel == 1 |
|
*/ |
|
static int gtStripContig(TIFFRGBAImage *img, uint32_t *raster, uint32_t w, |
|
uint32_t h) |
|
{ |
|
TIFF *tif = img->tif; |
|
tileContigRoutine put = img->put.contig; |
|
uint32_t row, y, nrow, nrowsub, rowstoread; |
|
tmsize_t pos; |
|
unsigned char *buf = NULL; |
|
uint32_t rowsperstrip; |
|
uint16_t subsamplinghor, subsamplingver; |
|
uint32_t imagewidth = img->width; |
|
tmsize_t scanline; |
|
int32_t fromskew, toskew; |
|
int ret = 1, flip; |
|
tmsize_t maxstripsize; |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, |
|
&subsamplingver); |
|
if (subsamplingver == 0) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), |
|
"Invalid vertical YCbCr subsampling"); |
|
return (0); |
|
} |
|
|
|
maxstripsize = TIFFStripSize(tif); |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) |
|
{ |
|
if (w > INT_MAX) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "Width overflow"); |
|
return (0); |
|
} |
|
y = h - 1; |
|
toskew = -(int32_t)(w + w); |
|
} |
|
else |
|
{ |
|
y = 0; |
|
toskew = -(int32_t)(w - w); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
|
|
|
scanline = TIFFScanlineSize(tif); |
|
fromskew = (w < imagewidth ? imagewidth - w : 0); |
|
for (row = 0; row < h; row += nrow) |
|
{ |
|
uint32_t temp; |
|
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
nrowsub = nrow; |
|
if ((nrowsub % subsamplingver) != 0) |
|
nrowsub += subsamplingver - nrowsub % subsamplingver; |
|
temp = (row + img->row_offset) % rowsperstrip + nrowsub; |
|
if (scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), |
|
"Integer overflow in gtStripContig"); |
|
return 0; |
|
} |
|
if (_TIFFReadEncodedStripAndAllocBuffer( |
|
tif, TIFFComputeStrip(tif, row + img->row_offset, 0), |
|
(void **)(&buf), maxstripsize, |
|
temp * scanline) == (tmsize_t)(-1) && |
|
(buf == NULL || img->stoponerr)) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
|
|
pos = ((row + img->row_offset) % rowsperstrip) * scanline + |
|
((tmsize_t)img->col_offset * img->samplesperpixel); |
|
tmsize_t roffset = (tmsize_t)y * w; |
|
(*put)(img, raster + roffset, 0, y, w, nrow, fromskew, toskew, |
|
buf + pos); |
|
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow); |
|
} |
|
|
|
if (flip & FLIP_HORIZONTALLY) |
|
{ |
|
uint32_t line; |
|
|
|
for (line = 0; line < h; line++) |
|
{ |
|
uint32_t *left = raster + (line * w); |
|
uint32_t *right = left + w - 1; |
|
|
|
while (left < right) |
|
{ |
|
uint32_t temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++; |
|
right--; |
|
} |
|
} |
|
} |
|
|
|
_TIFFfreeExt(img->tif, buf); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* Get a strip-organized image with |
|
* SamplesPerPixel > 1 |
|
* PlanarConfiguration separated |
|
* We assume that all such images are RGB. |
|
*/ |
|
static int gtStripSeparate(TIFFRGBAImage *img, uint32_t *raster, uint32_t w, |
|
uint32_t h) |
|
{ |
|
TIFF *tif = img->tif; |
|
tileSeparateRoutine put = img->put.separate; |
|
unsigned char *buf = NULL; |
|
unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL; |
|
uint32_t row, y, nrow, rowstoread; |
|
tmsize_t pos; |
|
tmsize_t scanline; |
|
uint32_t rowsperstrip, offset_row; |
|
uint32_t imagewidth = img->width; |
|
tmsize_t stripsize; |
|
tmsize_t bufsize; |
|
int32_t fromskew, toskew; |
|
int alpha = img->alpha; |
|
int ret = 1, flip; |
|
uint16_t colorchannels; |
|
|
|
stripsize = TIFFStripSize(tif); |
|
bufsize = |
|
_TIFFMultiplySSize(tif, alpha ? 4 : 3, stripsize, "gtStripSeparate"); |
|
if (bufsize == 0) |
|
{ |
|
return (0); |
|
} |
|
|
|
flip = setorientation(img); |
|
if (flip & FLIP_VERTICALLY) |
|
{ |
|
if (w > INT_MAX) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "Width overflow"); |
|
return (0); |
|
} |
|
y = h - 1; |
|
toskew = -(int32_t)(w + w); |
|
} |
|
else |
|
{ |
|
y = 0; |
|
toskew = -(int32_t)(w - w); |
|
} |
|
|
|
switch (img->photometric) |
|
{ |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
case PHOTOMETRIC_PALETTE: |
|
colorchannels = 1; |
|
break; |
|
|
|
default: |
|
colorchannels = 3; |
|
break; |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
|
scanline = TIFFScanlineSize(tif); |
|
fromskew = (w < imagewidth ? imagewidth - w : 0); |
|
for (row = 0; row < h; row += nrow) |
|
{ |
|
uint32_t temp; |
|
rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; |
|
nrow = (row + rowstoread > h ? h - row : rowstoread); |
|
offset_row = row + img->row_offset; |
|
temp = (row + img->row_offset) % rowsperstrip + nrow; |
|
if (scanline > 0 && temp > (size_t)(TIFF_TMSIZE_T_MAX / scanline)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), |
|
"Integer overflow in gtStripSeparate"); |
|
return 0; |
|
} |
|
if (buf == NULL) |
|
{ |
|
if (_TIFFReadEncodedStripAndAllocBuffer( |
|
tif, TIFFComputeStrip(tif, offset_row, 0), (void **)&buf, |
|
bufsize, temp * scanline) == (tmsize_t)(-1) && |
|
(buf == NULL || img->stoponerr)) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
p0 = buf; |
|
if (colorchannels == 1) |
|
{ |
|
p2 = p1 = p0; |
|
pa = (alpha ? (p0 + 3 * stripsize) : NULL); |
|
} |
|
else |
|
{ |
|
p1 = p0 + stripsize; |
|
p2 = p1 + stripsize; |
|
pa = (alpha ? (p2 + stripsize) : NULL); |
|
} |
|
} |
|
else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), |
|
p0, temp * scanline) == (tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (colorchannels > 1 && |
|
TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), p1, |
|
temp * scanline) == (tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (colorchannels > 1 && |
|
TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), p2, |
|
temp * scanline) == (tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
if (alpha) |
|
{ |
|
if (TIFFReadEncodedStrip( |
|
tif, TIFFComputeStrip(tif, offset_row, colorchannels), pa, |
|
temp * scanline) == (tmsize_t)(-1) && |
|
img->stoponerr) |
|
{ |
|
ret = 0; |
|
break; |
|
} |
|
} |
|
|
|
pos = ((row + img->row_offset) % rowsperstrip) * scanline + |
|
((tmsize_t)img->col_offset * img->samplesperpixel); |
|
tmsize_t roffset = (tmsize_t)y * w; |
|
(*put)(img, raster + roffset, 0, y, w, nrow, fromskew, toskew, p0 + pos, |
|
p1 + pos, p2 + pos, (alpha ? (pa + pos) : NULL)); |
|
y += ((flip & FLIP_VERTICALLY) ? -(int32_t)nrow : (int32_t)nrow); |
|
} |
|
|
|
if (flip & FLIP_HORIZONTALLY) |
|
{ |
|
uint32_t line; |
|
|
|
for (line = 0; line < h; line++) |
|
{ |
|
uint32_t *left = raster + (line * w); |
|
uint32_t *right = left + w - 1; |
|
|
|
while (left < right) |
|
{ |
|
uint32_t temp = *left; |
|
*left = *right; |
|
*right = temp; |
|
left++; |
|
right--; |
|
} |
|
} |
|
} |
|
|
|
_TIFFfreeExt(img->tif, buf); |
|
return (ret); |
|
} |
|
|
|
/* |
|
* The following routines move decoded data returned |
|
* from the TIFF library into rasters filled with packed |
|
* ABGR pixels (i.e. suitable for passing to lrecwrite.) |
|
* |
|
* The routines have been created according to the most |
|
* important cases and optimized. PickContigCase and |
|
* PickSeparateCase analyze the parameters and select |
|
* the appropriate "get" and "put" routine to use. |
|
*/ |
|
#define REPEAT8(op) \ |
|
REPEAT4(op); \ |
|
REPEAT4(op) |
|
#define REPEAT4(op) \ |
|
REPEAT2(op); \ |
|
REPEAT2(op) |
|
#define REPEAT2(op) \ |
|
op; \ |
|
op |
|
#define CASE8(x, op) \ |
|
switch (x) \ |
|
{ \ |
|
case 7: \ |
|
op; /*-fallthrough*/ \ |
|
case 6: \ |
|
op; /*-fallthrough*/ \ |
|
case 5: \ |
|
op; /*-fallthrough*/ \ |
|
case 4: \ |
|
op; /*-fallthrough*/ \ |
|
case 3: \ |
|
op; /*-fallthrough*/ \ |
|
case 2: \ |
|
op; /*-fallthrough*/ \ |
|
case 1: \ |
|
op; \ |
|
} |
|
#define CASE4(x, op) \ |
|
switch (x) \ |
|
{ \ |
|
case 3: \ |
|
op; /*-fallthrough*/ \ |
|
case 2: \ |
|
op; /*-fallthrough*/ \ |
|
case 1: \ |
|
op; \ |
|
} |
|
#define NOP |
|
|
|
#define UNROLL8(w, op1, op2) \ |
|
{ \ |
|
uint32_t _x; \ |
|
for (_x = w; _x >= 8; _x -= 8) \ |
|
{ \ |
|
op1; \ |
|
REPEAT8(op2); \ |
|
} \ |
|
if (_x > 0) \ |
|
{ \ |
|
op1; \ |
|
CASE8(_x, op2); \ |
|
} \ |
|
} |
|
#define UNROLL4(w, op1, op2) \ |
|
{ \ |
|
uint32_t _x; \ |
|
for (_x = w; _x >= 4; _x -= 4) \ |
|
{ \ |
|
op1; \ |
|
REPEAT4(op2); \ |
|
} \ |
|
if (_x > 0) \ |
|
{ \ |
|
op1; \ |
|
CASE4(_x, op2); \ |
|
} \ |
|
} |
|
#define UNROLL2(w, op1, op2) \ |
|
{ \ |
|
uint32_t _x; \ |
|
for (_x = w; _x >= 2; _x -= 2) \ |
|
{ \ |
|
op1; \ |
|
REPEAT2(op2); \ |
|
} \ |
|
if (_x) \ |
|
{ \ |
|
op1; \ |
|
op2; \ |
|
} \ |
|
} |
|
|
|
#define SKEW(r, g, b, skew) \ |
|
{ \ |
|
r += skew; \ |
|
g += skew; \ |
|
b += skew; \ |
|
} |
|
#define SKEW4(r, g, b, a, skew) \ |
|
{ \ |
|
r += skew; \ |
|
g += skew; \ |
|
b += skew; \ |
|
a += skew; \ |
|
} |
|
|
|
#define A1 (((uint32_t)0xffL) << 24) |
|
#define PACK(r, g, b) \ |
|
((uint32_t)(r) | ((uint32_t)(g) << 8) | ((uint32_t)(b) << 16) | A1) |
|
#define PACK4(r, g, b, a) \ |
|
((uint32_t)(r) | ((uint32_t)(g) << 8) | ((uint32_t)(b) << 16) | \ |
|
((uint32_t)(a) << 24)) |
|
#define W2B(v) (((v) >> 8) & 0xff) |
|
/* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ |
|
#define PACKW(r, g, b) \ |
|
((uint32_t)W2B(r) | ((uint32_t)W2B(g) << 8) | ((uint32_t)W2B(b) << 16) | A1) |
|
#define PACKW4(r, g, b, a) \ |
|
((uint32_t)W2B(r) | ((uint32_t)W2B(g) << 8) | ((uint32_t)W2B(b) << 16) | \ |
|
((uint32_t)W2B(a) << 24)) |
|
|
|
#define DECLAREContigPutFunc(name) \ |
|
static void name(TIFFRGBAImage *img, uint32_t *cp, uint32_t x, uint32_t y, \ |
|
uint32_t w, uint32_t h, int32_t fromskew, int32_t toskew, \ |
|
unsigned char *pp) |
|
|
|
/* |
|
* 8-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put8bitcmaptile) |
|
{ |
|
uint32_t **PALmap = img->PALmap; |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
*cp++ = PALmap[*pp][0]; |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 4-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put4bitcmaptile) |
|
{ |
|
uint32_t **PALmap = img->PALmap; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew /= 2; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t *bw; |
|
UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 2-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put2bitcmaptile) |
|
{ |
|
uint32_t **PALmap = img->PALmap; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew /= 4; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t *bw; |
|
UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 1-bit palette => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put1bitcmaptile) |
|
{ |
|
uint32_t **PALmap = img->PALmap; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew /= 8; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t *bw; |
|
UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(putgreytile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint32_t **BWmap = img->BWmap; |
|
|
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
*cp++ = BWmap[*pp][0]; |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit greyscale with associated alpha => colormap/RGBA |
|
*/ |
|
DECLAREContigPutFunc(putagreytile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint32_t **BWmap = img->BWmap; |
|
|
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
*cp++ = BWmap[*pp][0] & ((uint32_t) * (pp + 1) << 24 | ~A1); |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put16bitbwtile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint32_t **BWmap = img->BWmap; |
|
|
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
uint16_t *wp = (uint16_t *)pp; |
|
|
|
for (x = w; x > 0; --x) |
|
{ |
|
/* use high order byte of 16bit value */ |
|
|
|
*cp++ = BWmap[*wp >> 8][0]; |
|
pp += 2 * samplesperpixel; |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 1-bit bilevel => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put1bitbwtile) |
|
{ |
|
uint32_t **BWmap = img->BWmap; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew /= 8; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t *bw; |
|
UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 2-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put2bitbwtile) |
|
{ |
|
uint32_t **BWmap = img->BWmap; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew /= 4; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t *bw; |
|
UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 4-bit greyscale => colormap/RGB |
|
*/ |
|
DECLAREContigPutFunc(put4bitbwtile) |
|
{ |
|
uint32_t **BWmap = img->BWmap; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew /= 2; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t *bw; |
|
UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples, no Map => RGB |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
UNROLL8(w, NOP, *cp++ = PACK(pp[0], pp[1], pp[2]); |
|
pp += samplesperpixel); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples => RGBA w/ associated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBAAcontig8bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
UNROLL8(w, NOP, *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); |
|
pp += samplesperpixel); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed samples => RGBA w/ unassociated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBUAcontig8bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t r, g, b, a; |
|
uint8_t *m; |
|
for (x = w; x > 0; --x) |
|
{ |
|
a = pp[3]; |
|
m = img->UaToAa + ((size_t)a << 8); |
|
r = m[pp[0]]; |
|
g = m[pp[1]]; |
|
b = m[pp[2]]; |
|
*cp++ = PACK4(r, g, b, a); |
|
pp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed samples => RGB |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig16bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16_t *wp = (uint16_t *)pp; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
*cp++ = PACK(img->Bitdepth16To8[wp[0]], img->Bitdepth16To8[wp[1]], |
|
img->Bitdepth16To8[wp[2]]); |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed samples => RGBA w/ associated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBAAcontig16bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16_t *wp = (uint16_t *)pp; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
*cp++ = PACK4(img->Bitdepth16To8[wp[0]], img->Bitdepth16To8[wp[1]], |
|
img->Bitdepth16To8[wp[2]], img->Bitdepth16To8[wp[3]]); |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed samples => RGBA w/ unassociated alpha |
|
* (known to have Map == NULL) |
|
*/ |
|
DECLAREContigPutFunc(putRGBUAcontig16bittile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16_t *wp = (uint16_t *)pp; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t r, g, b, a; |
|
uint8_t *m; |
|
for (x = w; x > 0; --x) |
|
{ |
|
a = img->Bitdepth16To8[wp[3]]; |
|
m = img->UaToAa + ((size_t)a << 8); |
|
r = m[img->Bitdepth16To8[wp[0]]]; |
|
g = m[img->Bitdepth16To8[wp[1]]]; |
|
b = m[img->Bitdepth16To8[wp[2]]]; |
|
*cp++ = PACK4(r, g, b, a); |
|
wp += samplesperpixel; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed CMYK samples w/o Map => RGB |
|
* |
|
* NB: The conversion of CMYK->RGB is *very* crude. |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
uint16_t r, g, b, k; |
|
|
|
(void)x; |
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
UNROLL8(w, NOP, k = 255 - pp[3]; r = (k * (255 - pp[0])) / 255; |
|
g = (k * (255 - pp[1])) / 255; b = (k * (255 - pp[2])) / 255; |
|
*cp++ = PACK(r, g, b); pp += samplesperpixel); |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed CMYK samples w/Map => RGB |
|
* |
|
* NB: The conversion of CMYK->RGB is *very* crude. |
|
*/ |
|
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) |
|
{ |
|
int samplesperpixel = img->samplesperpixel; |
|
TIFFRGBValue *Map = img->Map; |
|
uint16_t r, g, b, k; |
|
|
|
(void)y; |
|
fromskew *= samplesperpixel; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
k = 255 - pp[3]; |
|
r = (k * (255 - pp[0])) / 255; |
|
g = (k * (255 - pp[1])) / 255; |
|
b = (k * (255 - pp[2])) / 255; |
|
*cp++ = PACK(Map[r], Map[g], Map[b]); |
|
pp += samplesperpixel; |
|
} |
|
pp += fromskew; |
|
cp += toskew; |
|
} |
|
} |
|
|
|
#define DECLARESepPutFunc(name) \ |
|
static void name(TIFFRGBAImage *img, uint32_t *cp, uint32_t x, uint32_t y, \ |
|
uint32_t w, uint32_t h, int32_t fromskew, int32_t toskew, \ |
|
unsigned char *r, unsigned char *g, unsigned char *b, \ |
|
unsigned char *a) |
|
|
|
/* |
|
* 8-bit unpacked samples => RGB |
|
*/ |
|
DECLARESepPutFunc(putRGBseparate8bittile) |
|
{ |
|
(void)img; |
|
(void)x; |
|
(void)y; |
|
(void)a; |
|
for (; h > 0; --h) |
|
{ |
|
UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); |
|
SKEW(r, g, b, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit unpacked samples => RGBA w/ associated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBAAseparate8bittile) |
|
{ |
|
(void)img; |
|
(void)x; |
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); |
|
SKEW4(r, g, b, a, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit unpacked CMYK samples => RGBA |
|
*/ |
|
DECLARESepPutFunc(putCMYKseparate8bittile) |
|
{ |
|
(void)img; |
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t rv, gv, bv, kv; |
|
for (x = w; x > 0; --x) |
|
{ |
|
kv = 255 - *a++; |
|
rv = (kv * (255 - *r++)) / 255; |
|
gv = (kv * (255 - *g++)) / 255; |
|
bv = (kv * (255 - *b++)) / 255; |
|
*cp++ = PACK4(rv, gv, bv, 255); |
|
} |
|
SKEW4(r, g, b, a, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit unpacked samples => RGBA w/ unassociated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBUAseparate8bittile) |
|
{ |
|
(void)img; |
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t rv, gv, bv, av; |
|
uint8_t *m; |
|
for (x = w; x > 0; --x) |
|
{ |
|
av = *a++; |
|
m = img->UaToAa + ((size_t)av << 8); |
|
rv = m[*r++]; |
|
gv = m[*g++]; |
|
bv = m[*b++]; |
|
*cp++ = PACK4(rv, gv, bv, av); |
|
} |
|
SKEW4(r, g, b, a, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit unpacked samples => RGB |
|
*/ |
|
DECLARESepPutFunc(putRGBseparate16bittile) |
|
{ |
|
uint16_t *wr = (uint16_t *)r; |
|
uint16_t *wg = (uint16_t *)g; |
|
uint16_t *wb = (uint16_t *)b; |
|
(void)img; |
|
(void)y; |
|
(void)a; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = 0; x < w; x++) |
|
*cp++ = PACK(img->Bitdepth16To8[*wr++], img->Bitdepth16To8[*wg++], |
|
img->Bitdepth16To8[*wb++]); |
|
SKEW(wr, wg, wb, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit unpacked samples => RGBA w/ associated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBAAseparate16bittile) |
|
{ |
|
uint16_t *wr = (uint16_t *)r; |
|
uint16_t *wg = (uint16_t *)g; |
|
uint16_t *wb = (uint16_t *)b; |
|
uint16_t *wa = (uint16_t *)a; |
|
(void)img; |
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = 0; x < w; x++) |
|
*cp++ = PACK4(img->Bitdepth16To8[*wr++], img->Bitdepth16To8[*wg++], |
|
img->Bitdepth16To8[*wb++], img->Bitdepth16To8[*wa++]); |
|
SKEW4(wr, wg, wb, wa, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit unpacked samples => RGBA w/ unassociated alpha |
|
*/ |
|
DECLARESepPutFunc(putRGBUAseparate16bittile) |
|
{ |
|
uint16_t *wr = (uint16_t *)r; |
|
uint16_t *wg = (uint16_t *)g; |
|
uint16_t *wb = (uint16_t *)b; |
|
uint16_t *wa = (uint16_t *)a; |
|
(void)img; |
|
(void)y; |
|
for (; h > 0; --h) |
|
{ |
|
uint32_t r2, g2, b2, a2; |
|
uint8_t *m; |
|
for (x = w; x > 0; --x) |
|
{ |
|
a2 = img->Bitdepth16To8[*wa++]; |
|
m = img->UaToAa + ((size_t)a2 << 8); |
|
r2 = m[img->Bitdepth16To8[*wr++]]; |
|
g2 = m[img->Bitdepth16To8[*wg++]]; |
|
b2 = m[img->Bitdepth16To8[*wb++]]; |
|
*cp++ = PACK4(r2, g2, b2, a2); |
|
} |
|
SKEW4(wr, wg, wb, wa, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed CIE L*a*b 1976 samples => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitCIELab8) |
|
{ |
|
float X, Y, Z; |
|
uint32_t r, g, b; |
|
(void)y; |
|
fromskew *= 3; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
TIFFCIELabToXYZ(img->cielab, (unsigned char)pp[0], |
|
(signed char)pp[1], (signed char)pp[2], &X, &Y, &Z); |
|
TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); |
|
*cp++ = PACK(r, g, b); |
|
pp += 3; |
|
} |
|
cp += toskew; |
|
pp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* 16-bit packed CIE L*a*b 1976 samples => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitCIELab16) |
|
{ |
|
float X, Y, Z; |
|
uint32_t r, g, b; |
|
uint16_t *wp = (uint16_t *)pp; |
|
(void)y; |
|
fromskew *= 3; |
|
for (; h > 0; --h) |
|
{ |
|
for (x = w; x > 0; --x) |
|
{ |
|
TIFFCIELab16ToXYZ(img->cielab, (uint16_t)wp[0], (int16_t)wp[1], |
|
(int16_t)wp[2], &X, &Y, &Z); |
|
TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); |
|
*cp++ = PACK(r, g, b); |
|
wp += 3; |
|
} |
|
cp += toskew; |
|
wp += fromskew; |
|
} |
|
} |
|
|
|
/* |
|
* YCbCr -> RGB conversion and packing routines. |
|
*/ |
|
|
|
#define YCbCrtoRGB(dst, Y) \ |
|
{ \ |
|
uint32_t r, g, b; \ |
|
TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ |
|
dst = PACK(r, g, b); \ |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr44tile) |
|
{ |
|
uint32_t *cp1 = cp + w + toskew; |
|
uint32_t *cp2 = cp1 + w + toskew; |
|
uint32_t *cp3 = cp2 + w + toskew; |
|
int32_t incr = 3 * w + 4 * toskew; |
|
|
|
(void)y; |
|
/* adjust fromskew */ |
|
fromskew = (fromskew / 4) * (4 * 2 + 2); |
|
if ((h & 3) == 0 && (w & 3) == 0) |
|
{ |
|
for (; h >= 4; h -= 4) |
|
{ |
|
x = w >> 2; |
|
do |
|
{ |
|
int32_t Cb = pp[16]; |
|
int32_t Cr = pp[17]; |
|
|
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
YCbCrtoRGB(cp[2], pp[2]); |
|
YCbCrtoRGB(cp[3], pp[3]); |
|
YCbCrtoRGB(cp1[0], pp[4]); |
|
YCbCrtoRGB(cp1[1], pp[5]); |
|
YCbCrtoRGB(cp1[2], pp[6]); |
|
YCbCrtoRGB(cp1[3], pp[7]); |
|
YCbCrtoRGB(cp2[0], pp[8]); |
|
YCbCrtoRGB(cp2[1], pp[9]); |
|
YCbCrtoRGB(cp2[2], pp[10]); |
|
YCbCrtoRGB(cp2[3], pp[11]); |
|
YCbCrtoRGB(cp3[0], pp[12]); |
|
YCbCrtoRGB(cp3[1], pp[13]); |
|
YCbCrtoRGB(cp3[2], pp[14]); |
|
YCbCrtoRGB(cp3[3], pp[15]); |
|
|
|
cp += 4; |
|
cp1 += 4; |
|
cp2 += 4; |
|
cp3 += 4; |
|
pp += 18; |
|
} while (--x); |
|
cp += incr; |
|
cp1 += incr; |
|
cp2 += incr; |
|
cp3 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
else |
|
{ |
|
while (h > 0) |
|
{ |
|
for (x = w; x > 0;) |
|
{ |
|
int32_t Cb = pp[16]; |
|
int32_t Cr = pp[17]; |
|
switch (x) |
|
{ |
|
default: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ |
|
case 3: |
|
YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ |
|
case 2: |
|
YCbCrtoRGB(cp1[3], pp[7]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[3], pp[3]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 3: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ |
|
case 3: |
|
YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ |
|
case 2: |
|
YCbCrtoRGB(cp1[2], pp[6]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[2], pp[2]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 2: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ |
|
case 3: |
|
YCbCrtoRGB(cp2[1], pp[9]); /* FALLTHROUGH */ |
|
case 2: |
|
YCbCrtoRGB(cp1[1], pp[5]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[1], pp[1]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 1: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ |
|
case 3: |
|
YCbCrtoRGB(cp2[0], pp[8]); /* FALLTHROUGH */ |
|
case 2: |
|
YCbCrtoRGB(cp1[0], pp[4]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[0], pp[0]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
} |
|
if (x < 4) |
|
{ |
|
cp += x; |
|
cp1 += x; |
|
cp2 += x; |
|
cp3 += x; |
|
x = 0; |
|
} |
|
else |
|
{ |
|
cp += 4; |
|
cp1 += 4; |
|
cp2 += 4; |
|
cp3 += 4; |
|
x -= 4; |
|
} |
|
pp += 18; |
|
} |
|
if (h <= 4) |
|
break; |
|
h -= 4; |
|
cp += incr; |
|
cp1 += incr; |
|
cp2 += incr; |
|
cp3 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr42tile) |
|
{ |
|
uint32_t *cp1 = cp + w + toskew; |
|
int32_t incr = 2 * toskew + w; |
|
|
|
(void)y; |
|
fromskew = (fromskew / 4) * (4 * 2 + 2); |
|
if ((w & 3) == 0 && (h & 1) == 0) |
|
{ |
|
for (; h >= 2; h -= 2) |
|
{ |
|
x = w >> 2; |
|
do |
|
{ |
|
int32_t Cb = pp[8]; |
|
int32_t Cr = pp[9]; |
|
|
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
YCbCrtoRGB(cp[2], pp[2]); |
|
YCbCrtoRGB(cp[3], pp[3]); |
|
YCbCrtoRGB(cp1[0], pp[4]); |
|
YCbCrtoRGB(cp1[1], pp[5]); |
|
YCbCrtoRGB(cp1[2], pp[6]); |
|
YCbCrtoRGB(cp1[3], pp[7]); |
|
|
|
cp += 4; |
|
cp1 += 4; |
|
pp += 10; |
|
} while (--x); |
|
cp += incr; |
|
cp1 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
else |
|
{ |
|
while (h > 0) |
|
{ |
|
for (x = w; x > 0;) |
|
{ |
|
int32_t Cb = pp[8]; |
|
int32_t Cr = pp[9]; |
|
switch (x) |
|
{ |
|
default: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp1[3], pp[7]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[3], pp[3]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 3: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp1[2], pp[6]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[2], pp[2]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 2: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp1[1], pp[5]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[1], pp[1]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
case 1: |
|
switch (h) |
|
{ |
|
default: |
|
YCbCrtoRGB(cp1[0], pp[4]); /* FALLTHROUGH */ |
|
case 1: |
|
YCbCrtoRGB(cp[0], pp[0]); /* FALLTHROUGH */ |
|
} /* FALLTHROUGH */ |
|
} |
|
if (x < 4) |
|
{ |
|
cp += x; |
|
cp1 += x; |
|
x = 0; |
|
} |
|
else |
|
{ |
|
cp += 4; |
|
cp1 += 4; |
|
x -= 4; |
|
} |
|
pp += 10; |
|
} |
|
if (h <= 2) |
|
break; |
|
h -= 2; |
|
cp += incr; |
|
cp1 += incr; |
|
pp += fromskew; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr41tile) |
|
{ |
|
(void)y; |
|
fromskew = (fromskew / 4) * (4 * 1 + 2); |
|
do |
|
{ |
|
x = w >> 2; |
|
while (x > 0) |
|
{ |
|
int32_t Cb = pp[4]; |
|
int32_t Cr = pp[5]; |
|
|
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
YCbCrtoRGB(cp[2], pp[2]); |
|
YCbCrtoRGB(cp[3], pp[3]); |
|
|
|
cp += 4; |
|
pp += 6; |
|
x--; |
|
} |
|
|
|
if ((w & 3) != 0) |
|
{ |
|
int32_t Cb = pp[4]; |
|
int32_t Cr = pp[5]; |
|
|
|
switch ((w & 3)) |
|
{ |
|
case 3: |
|
YCbCrtoRGB(cp[2], pp[2]); /*-fallthrough*/ |
|
case 2: |
|
YCbCrtoRGB(cp[1], pp[1]); /*-fallthrough*/ |
|
case 1: |
|
YCbCrtoRGB(cp[0], pp[0]); /*-fallthrough*/ |
|
case 0: |
|
break; |
|
} |
|
|
|
cp += (w & 3); |
|
pp += 6; |
|
} |
|
|
|
cp += toskew; |
|
pp += fromskew; |
|
} while (--h); |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr22tile) |
|
{ |
|
uint32_t *cp2; |
|
int32_t incr = 2 * toskew + w; |
|
(void)y; |
|
fromskew = (fromskew / 2) * (2 * 2 + 2); |
|
cp2 = cp + w + toskew; |
|
while (h >= 2) |
|
{ |
|
x = w; |
|
while (x >= 2) |
|
{ |
|
uint32_t Cb = pp[4]; |
|
uint32_t Cr = pp[5]; |
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
YCbCrtoRGB(cp2[0], pp[2]); |
|
YCbCrtoRGB(cp2[1], pp[3]); |
|
cp += 2; |
|
cp2 += 2; |
|
pp += 6; |
|
x -= 2; |
|
} |
|
if (x == 1) |
|
{ |
|
uint32_t Cb = pp[4]; |
|
uint32_t Cr = pp[5]; |
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp2[0], pp[2]); |
|
cp++; |
|
cp2++; |
|
pp += 6; |
|
} |
|
cp += incr; |
|
cp2 += incr; |
|
pp += fromskew; |
|
h -= 2; |
|
} |
|
if (h == 1) |
|
{ |
|
x = w; |
|
while (x >= 2) |
|
{ |
|
uint32_t Cb = pp[4]; |
|
uint32_t Cr = pp[5]; |
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
cp += 2; |
|
cp2 += 2; |
|
pp += 6; |
|
x -= 2; |
|
} |
|
if (x == 1) |
|
{ |
|
uint32_t Cb = pp[4]; |
|
uint32_t Cr = pp[5]; |
|
YCbCrtoRGB(cp[0], pp[0]); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr21tile) |
|
{ |
|
(void)y; |
|
fromskew = (fromskew / 2) * (2 * 1 + 2); |
|
do |
|
{ |
|
x = w >> 1; |
|
while (x > 0) |
|
{ |
|
int32_t Cb = pp[2]; |
|
int32_t Cr = pp[3]; |
|
|
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp[1], pp[1]); |
|
|
|
cp += 2; |
|
pp += 4; |
|
x--; |
|
} |
|
|
|
if ((w & 1) != 0) |
|
{ |
|
int32_t Cb = pp[2]; |
|
int32_t Cr = pp[3]; |
|
|
|
YCbCrtoRGB(cp[0], pp[0]); |
|
|
|
cp += 1; |
|
pp += 4; |
|
} |
|
|
|
cp += toskew; |
|
pp += fromskew; |
|
} while (--h); |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr12tile) |
|
{ |
|
uint32_t *cp2; |
|
int32_t incr = 2 * toskew + w; |
|
(void)y; |
|
fromskew = (fromskew / 1) * (1 * 2 + 2); |
|
cp2 = cp + w + toskew; |
|
while (h >= 2) |
|
{ |
|
x = w; |
|
do |
|
{ |
|
uint32_t Cb = pp[2]; |
|
uint32_t Cr = pp[3]; |
|
YCbCrtoRGB(cp[0], pp[0]); |
|
YCbCrtoRGB(cp2[0], pp[1]); |
|
cp++; |
|
cp2++; |
|
pp += 4; |
|
} while (--x); |
|
cp += incr; |
|
cp2 += incr; |
|
pp += fromskew; |
|
h -= 2; |
|
} |
|
if (h == 1) |
|
{ |
|
x = w; |
|
do |
|
{ |
|
uint32_t Cb = pp[2]; |
|
uint32_t Cr = pp[3]; |
|
YCbCrtoRGB(cp[0], pp[0]); |
|
cp++; |
|
pp += 4; |
|
} while (--x); |
|
} |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ no subsampling => RGB |
|
*/ |
|
DECLAREContigPutFunc(putcontig8bitYCbCr11tile) |
|
{ |
|
(void)y; |
|
fromskew = (fromskew / 1) * (1 * 1 + 2); |
|
do |
|
{ |
|
x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ |
|
do |
|
{ |
|
int32_t Cb = pp[1]; |
|
int32_t Cr = pp[2]; |
|
|
|
YCbCrtoRGB(*cp++, pp[0]); |
|
|
|
pp += 3; |
|
} while (--x); |
|
cp += toskew; |
|
pp += fromskew; |
|
} while (--h); |
|
} |
|
|
|
/* |
|
* 8-bit packed YCbCr samples w/ no subsampling => RGB |
|
*/ |
|
DECLARESepPutFunc(putseparate8bitYCbCr11tile) |
|
{ |
|
(void)y; |
|
(void)a; |
|
/* TODO: naming of input vars is still off, change obfuscating declaration |
|
* inside define, or resolve obfuscation */ |
|
for (; h > 0; --h) |
|
{ |
|
x = w; |
|
do |
|
{ |
|
uint32_t dr, dg, db; |
|
TIFFYCbCrtoRGB(img->ycbcr, *r++, *g++, *b++, &dr, &dg, &db); |
|
*cp++ = PACK(dr, dg, db); |
|
} while (--x); |
|
SKEW(r, g, b, fromskew); |
|
cp += toskew; |
|
} |
|
} |
|
#undef YCbCrtoRGB |
|
|
|
static int isInRefBlackWhiteRange(float f) |
|
{ |
|
return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF; |
|
} |
|
|
|
static int initYCbCrConversion(TIFFRGBAImage *img) |
|
{ |
|
static const char module[] = "initYCbCrConversion"; |
|
|
|
float *luma, *refBlackWhite; |
|
|
|
if (img->ycbcr == NULL) |
|
{ |
|
img->ycbcr = (TIFFYCbCrToRGB *)_TIFFmallocExt( |
|
img->tif, TIFFroundup_32(sizeof(TIFFYCbCrToRGB), sizeof(long)) + |
|
4 * 256 * sizeof(TIFFRGBValue) + |
|
2 * 256 * sizeof(int) + 3 * 256 * sizeof(int32_t)); |
|
if (img->ycbcr == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, module, |
|
"No space for YCbCr->RGB conversion state"); |
|
return (0); |
|
} |
|
} |
|
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); |
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, |
|
&refBlackWhite); |
|
|
|
/* Do some validation to avoid later issues. Detect NaN for now */ |
|
/* and also if lumaGreen is zero since we divide by it later */ |
|
if (luma[0] != luma[0] || luma[1] != luma[1] || luma[1] == 0.0 || |
|
luma[2] != luma[2]) |
|
{ |
|
TIFFErrorExtR(img->tif, module, |
|
"Invalid values for YCbCrCoefficients tag"); |
|
return (0); |
|
} |
|
|
|
if (!isInRefBlackWhiteRange(refBlackWhite[0]) || |
|
!isInRefBlackWhiteRange(refBlackWhite[1]) || |
|
!isInRefBlackWhiteRange(refBlackWhite[2]) || |
|
!isInRefBlackWhiteRange(refBlackWhite[3]) || |
|
!isInRefBlackWhiteRange(refBlackWhite[4]) || |
|
!isInRefBlackWhiteRange(refBlackWhite[5])) |
|
{ |
|
TIFFErrorExtR(img->tif, module, |
|
"Invalid values for ReferenceBlackWhite tag"); |
|
return (0); |
|
} |
|
|
|
if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) |
|
return (0); |
|
return (1); |
|
} |
|
|
|
static tileContigRoutine initCIELabConversion(TIFFRGBAImage *img) |
|
{ |
|
static const char module[] = "initCIELabConversion"; |
|
|
|
float *whitePoint; |
|
float refWhite[3]; |
|
|
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); |
|
if (whitePoint[1] == 0.0f) |
|
{ |
|
TIFFErrorExtR(img->tif, module, "Invalid value for WhitePoint tag."); |
|
return NULL; |
|
} |
|
|
|
if (!img->cielab) |
|
{ |
|
img->cielab = (TIFFCIELabToRGB *)_TIFFmallocExt( |
|
img->tif, sizeof(TIFFCIELabToRGB)); |
|
if (!img->cielab) |
|
{ |
|
TIFFErrorExtR(img->tif, module, |
|
"No space for CIE L*a*b*->RGB conversion state."); |
|
return NULL; |
|
} |
|
} |
|
|
|
refWhite[1] = 100.0F; |
|
refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; |
|
refWhite[2] = |
|
(1.0F - whitePoint[0] - whitePoint[1]) / whitePoint[1] * refWhite[1]; |
|
if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) |
|
{ |
|
TIFFErrorExtR(img->tif, module, |
|
"Failed to initialize CIE L*a*b*->RGB conversion state."); |
|
_TIFFfreeExt(img->tif, img->cielab); |
|
return NULL; |
|
} |
|
|
|
if (img->bitspersample == 8) |
|
return putcontig8bitCIELab8; |
|
else if (img->bitspersample == 16) |
|
return putcontig8bitCIELab16; |
|
return NULL; |
|
} |
|
|
|
/* |
|
* Greyscale images with less than 8 bits/sample are handled |
|
* with a table to avoid lots of shifts and masks. The table |
|
* is setup so that put*bwtile (below) can retrieve 8/bitspersample |
|
* pixel values simply by indexing into the table with one |
|
* number. |
|
*/ |
|
static int makebwmap(TIFFRGBAImage *img) |
|
{ |
|
TIFFRGBValue *Map = img->Map; |
|
int bitspersample = img->bitspersample; |
|
int nsamples = 8 / bitspersample; |
|
int i; |
|
uint32_t *p; |
|
|
|
if (nsamples == 0) |
|
nsamples = 1; |
|
|
|
img->BWmap = (uint32_t **)_TIFFmallocExt( |
|
img->tif, |
|
256 * sizeof(uint32_t *) + (256 * nsamples * sizeof(uint32_t))); |
|
if (img->BWmap == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, TIFFFileName(img->tif), |
|
"No space for B&W mapping table"); |
|
return (0); |
|
} |
|
p = (uint32_t *)(img->BWmap + 256); |
|
for (i = 0; i < 256; i++) |
|
{ |
|
TIFFRGBValue c; |
|
img->BWmap[i] = p; |
|
switch (bitspersample) |
|
{ |
|
#define GREY(x) \ |
|
c = Map[x]; \ |
|
*p++ = PACK(c, c, c); |
|
case 1: |
|
GREY(i >> 7); |
|
GREY((i >> 6) & 1); |
|
GREY((i >> 5) & 1); |
|
GREY((i >> 4) & 1); |
|
GREY((i >> 3) & 1); |
|
GREY((i >> 2) & 1); |
|
GREY((i >> 1) & 1); |
|
GREY(i & 1); |
|
break; |
|
case 2: |
|
GREY(i >> 6); |
|
GREY((i >> 4) & 3); |
|
GREY((i >> 2) & 3); |
|
GREY(i & 3); |
|
break; |
|
case 4: |
|
GREY(i >> 4); |
|
GREY(i & 0xf); |
|
break; |
|
case 8: |
|
case 16: |
|
GREY(i); |
|
break; |
|
} |
|
#undef GREY |
|
} |
|
return (1); |
|
} |
|
|
|
/* |
|
* Construct a mapping table to convert from the range |
|
* of the data samples to [0,255] --for display. This |
|
* process also handles inverting B&W images when needed. |
|
*/ |
|
static int setupMap(TIFFRGBAImage *img) |
|
{ |
|
int32_t x, range; |
|
|
|
range = (int32_t)((1L << img->bitspersample) - 1); |
|
|
|
/* treat 16 bit the same as eight bit */ |
|
if (img->bitspersample == 16) |
|
range = (int32_t)255; |
|
|
|
img->Map = (TIFFRGBValue *)_TIFFmallocExt( |
|
img->tif, (range + 1) * sizeof(TIFFRGBValue)); |
|
if (img->Map == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, TIFFFileName(img->tif), |
|
"No space for photometric conversion table"); |
|
return (0); |
|
} |
|
if (img->photometric == PHOTOMETRIC_MINISWHITE) |
|
{ |
|
for (x = 0; x <= range; x++) |
|
img->Map[x] = (TIFFRGBValue)(((range - x) * 255) / range); |
|
} |
|
else |
|
{ |
|
for (x = 0; x <= range; x++) |
|
img->Map[x] = (TIFFRGBValue)((x * 255) / range); |
|
} |
|
if (img->bitspersample <= 16 && |
|
(img->photometric == PHOTOMETRIC_MINISBLACK || |
|
img->photometric == PHOTOMETRIC_MINISWHITE)) |
|
{ |
|
/* |
|
* Use photometric mapping table to construct |
|
* unpacking tables for samples <= 8 bits. |
|
*/ |
|
if (!makebwmap(img)) |
|
return (0); |
|
/* no longer need Map, free it */ |
|
_TIFFfreeExt(img->tif, img->Map); |
|
img->Map = NULL; |
|
} |
|
return (1); |
|
} |
|
|
|
static int checkcmap(TIFFRGBAImage *img) |
|
{ |
|
uint16_t *r = img->redcmap; |
|
uint16_t *g = img->greencmap; |
|
uint16_t *b = img->bluecmap; |
|
long n = 1L << img->bitspersample; |
|
|
|
while (n-- > 0) |
|
if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) |
|
return (16); |
|
return (8); |
|
} |
|
|
|
static void cvtcmap(TIFFRGBAImage *img) |
|
{ |
|
uint16_t *r = img->redcmap; |
|
uint16_t *g = img->greencmap; |
|
uint16_t *b = img->bluecmap; |
|
long i; |
|
|
|
for (i = (1L << img->bitspersample) - 1; i >= 0; i--) |
|
{ |
|
#define CVT(x) ((uint16_t)((x) >> 8)) |
|
r[i] = CVT(r[i]); |
|
g[i] = CVT(g[i]); |
|
b[i] = CVT(b[i]); |
|
#undef CVT |
|
} |
|
} |
|
|
|
/* |
|
* Palette images with <= 8 bits/sample are handled |
|
* with a table to avoid lots of shifts and masks. The table |
|
* is setup so that put*cmaptile (below) can retrieve 8/bitspersample |
|
* pixel values simply by indexing into the table with one |
|
* number. |
|
*/ |
|
static int makecmap(TIFFRGBAImage *img) |
|
{ |
|
int bitspersample = img->bitspersample; |
|
int nsamples = 8 / bitspersample; |
|
uint16_t *r = img->redcmap; |
|
uint16_t *g = img->greencmap; |
|
uint16_t *b = img->bluecmap; |
|
uint32_t *p; |
|
int i; |
|
|
|
img->PALmap = (uint32_t **)_TIFFmallocExt( |
|
img->tif, |
|
256 * sizeof(uint32_t *) + (256 * nsamples * sizeof(uint32_t))); |
|
if (img->PALmap == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, TIFFFileName(img->tif), |
|
"No space for Palette mapping table"); |
|
return (0); |
|
} |
|
p = (uint32_t *)(img->PALmap + 256); |
|
for (i = 0; i < 256; i++) |
|
{ |
|
TIFFRGBValue c; |
|
img->PALmap[i] = p; |
|
#define CMAP(x) \ |
|
c = (TIFFRGBValue)x; \ |
|
*p++ = PACK(r[c] & 0xff, g[c] & 0xff, b[c] & 0xff); |
|
switch (bitspersample) |
|
{ |
|
case 1: |
|
CMAP(i >> 7); |
|
CMAP((i >> 6) & 1); |
|
CMAP((i >> 5) & 1); |
|
CMAP((i >> 4) & 1); |
|
CMAP((i >> 3) & 1); |
|
CMAP((i >> 2) & 1); |
|
CMAP((i >> 1) & 1); |
|
CMAP(i & 1); |
|
break; |
|
case 2: |
|
CMAP(i >> 6); |
|
CMAP((i >> 4) & 3); |
|
CMAP((i >> 2) & 3); |
|
CMAP(i & 3); |
|
break; |
|
case 4: |
|
CMAP(i >> 4); |
|
CMAP(i & 0xf); |
|
break; |
|
case 8: |
|
CMAP(i); |
|
break; |
|
} |
|
#undef CMAP |
|
} |
|
return (1); |
|
} |
|
|
|
/* |
|
* Construct any mapping table used |
|
* by the associated put routine. |
|
*/ |
|
static int buildMap(TIFFRGBAImage *img) |
|
{ |
|
switch (img->photometric) |
|
{ |
|
case PHOTOMETRIC_RGB: |
|
case PHOTOMETRIC_YCBCR: |
|
case PHOTOMETRIC_SEPARATED: |
|
if (img->bitspersample == 8) |
|
break; |
|
/* fall through... */ |
|
case PHOTOMETRIC_MINISBLACK: |
|
case PHOTOMETRIC_MINISWHITE: |
|
if (!setupMap(img)) |
|
return (0); |
|
break; |
|
case PHOTOMETRIC_PALETTE: |
|
/* |
|
* Convert 16-bit colormap to 8-bit (unless it looks |
|
* like an old-style 8-bit colormap). |
|
*/ |
|
if (checkcmap(img) == 16) |
|
cvtcmap(img); |
|
else |
|
TIFFWarningExtR(img->tif, TIFFFileName(img->tif), |
|
"Assuming 8-bit colormap"); |
|
/* |
|
* Use mapping table and colormap to construct |
|
* unpacking tables for samples < 8 bits. |
|
*/ |
|
if (img->bitspersample <= 8 && !makecmap(img)) |
|
return (0); |
|
break; |
|
} |
|
return (1); |
|
} |
|
|
|
/* |
|
* Select the appropriate conversion routine for packed data. |
|
*/ |
|
static int PickContigCase(TIFFRGBAImage *img) |
|
{ |
|
img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; |
|
img->put.contig = NULL; |
|
switch (img->photometric) |
|
{ |
|
case PHOTOMETRIC_RGB: |
|
switch (img->bitspersample) |
|
{ |
|
case 8: |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA && |
|
img->samplesperpixel >= 4) |
|
img->put.contig = putRGBAAcontig8bittile; |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA && |
|
img->samplesperpixel >= 4) |
|
{ |
|
if (BuildMapUaToAa(img)) |
|
img->put.contig = putRGBUAcontig8bittile; |
|
} |
|
else if (img->samplesperpixel >= 3) |
|
img->put.contig = putRGBcontig8bittile; |
|
break; |
|
case 16: |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA && |
|
img->samplesperpixel >= 4) |
|
{ |
|
if (BuildMapBitdepth16To8(img)) |
|
img->put.contig = putRGBAAcontig16bittile; |
|
} |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA && |
|
img->samplesperpixel >= 4) |
|
{ |
|
if (BuildMapBitdepth16To8(img) && BuildMapUaToAa(img)) |
|
img->put.contig = putRGBUAcontig16bittile; |
|
} |
|
else if (img->samplesperpixel >= 3) |
|
{ |
|
if (BuildMapBitdepth16To8(img)) |
|
img->put.contig = putRGBcontig16bittile; |
|
} |
|
break; |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: |
|
if (img->samplesperpixel >= 4 && buildMap(img)) |
|
{ |
|
if (img->bitspersample == 8) |
|
{ |
|
if (!img->Map) |
|
img->put.contig = putRGBcontig8bitCMYKtile; |
|
else |
|
img->put.contig = putRGBcontig8bitCMYKMaptile; |
|
} |
|
} |
|
break; |
|
case PHOTOMETRIC_PALETTE: |
|
if (buildMap(img)) |
|
{ |
|
switch (img->bitspersample) |
|
{ |
|
case 8: |
|
img->put.contig = put8bitcmaptile; |
|
break; |
|
case 4: |
|
img->put.contig = put4bitcmaptile; |
|
break; |
|
case 2: |
|
img->put.contig = put2bitcmaptile; |
|
break; |
|
case 1: |
|
img->put.contig = put1bitcmaptile; |
|
break; |
|
} |
|
} |
|
break; |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
if (buildMap(img)) |
|
{ |
|
switch (img->bitspersample) |
|
{ |
|
case 16: |
|
img->put.contig = put16bitbwtile; |
|
break; |
|
case 8: |
|
if (img->alpha && img->samplesperpixel == 2) |
|
img->put.contig = putagreytile; |
|
else |
|
img->put.contig = putgreytile; |
|
break; |
|
case 4: |
|
img->put.contig = put4bitbwtile; |
|
break; |
|
case 2: |
|
img->put.contig = put2bitbwtile; |
|
break; |
|
case 1: |
|
img->put.contig = put1bitbwtile; |
|
break; |
|
} |
|
} |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
if ((img->bitspersample == 8) && (img->samplesperpixel == 3)) |
|
{ |
|
if (initYCbCrConversion(img) != 0) |
|
{ |
|
/* |
|
* The 6.0 spec says that subsampling must be |
|
* one of 1, 2, or 4, and that vertical subsampling |
|
* must always be <= horizontal subsampling; so |
|
* there are only a few possibilities and we just |
|
* enumerate the cases. |
|
* Joris: added support for the [1,2] case, nonetheless, to |
|
* accommodate some OJPEG files |
|
*/ |
|
uint16_t SubsamplingHor; |
|
uint16_t SubsamplingVer; |
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, |
|
&SubsamplingHor, &SubsamplingVer); |
|
switch ((SubsamplingHor << 4) | SubsamplingVer) |
|
{ |
|
case 0x44: |
|
img->put.contig = putcontig8bitYCbCr44tile; |
|
break; |
|
case 0x42: |
|
img->put.contig = putcontig8bitYCbCr42tile; |
|
break; |
|
case 0x41: |
|
img->put.contig = putcontig8bitYCbCr41tile; |
|
break; |
|
case 0x22: |
|
img->put.contig = putcontig8bitYCbCr22tile; |
|
break; |
|
case 0x21: |
|
img->put.contig = putcontig8bitYCbCr21tile; |
|
break; |
|
case 0x12: |
|
img->put.contig = putcontig8bitYCbCr12tile; |
|
break; |
|
case 0x11: |
|
img->put.contig = putcontig8bitYCbCr11tile; |
|
break; |
|
} |
|
} |
|
} |
|
break; |
|
case PHOTOMETRIC_CIELAB: |
|
if (img->samplesperpixel == 3 && buildMap(img)) |
|
{ |
|
if (img->bitspersample == 8 || img->bitspersample == 16) |
|
img->put.contig = initCIELabConversion(img); |
|
break; |
|
} |
|
} |
|
return ((img->get != NULL) && (img->put.contig != NULL)); |
|
} |
|
|
|
/* |
|
* Select the appropriate conversion routine for unpacked data. |
|
* |
|
* NB: we assume that unpacked single channel data is directed |
|
* to the "packed routines. |
|
*/ |
|
static int PickSeparateCase(TIFFRGBAImage *img) |
|
{ |
|
img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; |
|
img->put.separate = NULL; |
|
switch (img->photometric) |
|
{ |
|
case PHOTOMETRIC_MINISWHITE: |
|
case PHOTOMETRIC_MINISBLACK: |
|
/* greyscale images processed pretty much as RGB by gtTileSeparate |
|
*/ |
|
case PHOTOMETRIC_RGB: |
|
switch (img->bitspersample) |
|
{ |
|
case 8: |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
|
img->put.separate = putRGBAAseparate8bittile; |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
|
{ |
|
if (BuildMapUaToAa(img)) |
|
img->put.separate = putRGBUAseparate8bittile; |
|
} |
|
else |
|
img->put.separate = putRGBseparate8bittile; |
|
break; |
|
case 16: |
|
if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
|
{ |
|
if (BuildMapBitdepth16To8(img)) |
|
img->put.separate = putRGBAAseparate16bittile; |
|
} |
|
else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
|
{ |
|
if (BuildMapBitdepth16To8(img) && BuildMapUaToAa(img)) |
|
img->put.separate = putRGBUAseparate16bittile; |
|
} |
|
else |
|
{ |
|
if (BuildMapBitdepth16To8(img)) |
|
img->put.separate = putRGBseparate16bittile; |
|
} |
|
break; |
|
} |
|
break; |
|
case PHOTOMETRIC_SEPARATED: |
|
if (img->bitspersample == 8 && img->samplesperpixel == 4) |
|
{ |
|
img->alpha = |
|
1; // Not alpha, but seems like the only way to get 4th band |
|
img->put.separate = putCMYKseparate8bittile; |
|
} |
|
break; |
|
case PHOTOMETRIC_YCBCR: |
|
if ((img->bitspersample == 8) && (img->samplesperpixel == 3)) |
|
{ |
|
if (initYCbCrConversion(img) != 0) |
|
{ |
|
uint16_t hs, vs; |
|
TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, |
|
&hs, &vs); |
|
switch ((hs << 4) | vs) |
|
{ |
|
case 0x11: |
|
img->put.separate = putseparate8bitYCbCr11tile; |
|
break; |
|
/* TODO: add other cases here */ |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
return ((img->get != NULL) && (img->put.separate != NULL)); |
|
} |
|
|
|
static int BuildMapUaToAa(TIFFRGBAImage *img) |
|
{ |
|
static const char module[] = "BuildMapUaToAa"; |
|
uint8_t *m; |
|
uint16_t na, nv; |
|
assert(img->UaToAa == NULL); |
|
img->UaToAa = _TIFFmallocExt(img->tif, 65536); |
|
if (img->UaToAa == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, module, "Out of memory"); |
|
return (0); |
|
} |
|
m = img->UaToAa; |
|
for (na = 0; na < 256; na++) |
|
{ |
|
for (nv = 0; nv < 256; nv++) |
|
*m++ = (uint8_t)((nv * na + 127) / 255); |
|
} |
|
return (1); |
|
} |
|
|
|
static int BuildMapBitdepth16To8(TIFFRGBAImage *img) |
|
{ |
|
static const char module[] = "BuildMapBitdepth16To8"; |
|
uint8_t *m; |
|
uint32_t n; |
|
assert(img->Bitdepth16To8 == NULL); |
|
img->Bitdepth16To8 = _TIFFmallocExt(img->tif, 65536); |
|
if (img->Bitdepth16To8 == NULL) |
|
{ |
|
TIFFErrorExtR(img->tif, module, "Out of memory"); |
|
return (0); |
|
} |
|
m = img->Bitdepth16To8; |
|
for (n = 0; n < 65536; n++) |
|
*m++ = (uint8_t)((n + 128) / 257); |
|
return (1); |
|
} |
|
|
|
/* |
|
* Read a whole strip off data from the file, and convert to RGBA form. |
|
* If this is the last strip, then it will only contain the portion of |
|
* the strip that is actually within the image space. The result is |
|
* organized in bottom to top form. |
|
*/ |
|
|
|
int TIFFReadRGBAStrip(TIFF *tif, uint32_t row, uint32_t *raster) |
|
|
|
{ |
|
return TIFFReadRGBAStripExt(tif, row, raster, 0); |
|
} |
|
|
|
int TIFFReadRGBAStripExt(TIFF *tif, uint32_t row, uint32_t *raster, |
|
int stop_on_error) |
|
|
|
{ |
|
char emsg[EMSG_BUF_SIZE] = ""; |
|
TIFFRGBAImage img; |
|
int ok; |
|
uint32_t rowsperstrip, rows_to_read; |
|
|
|
if (TIFFIsTiled(tif)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), |
|
"Can't use TIFFReadRGBAStrip() with tiled file."); |
|
return (0); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
|
if ((row % rowsperstrip) != 0) |
|
{ |
|
TIFFErrorExtR( |
|
tif, TIFFFileName(tif), |
|
"Row passed to TIFFReadRGBAStrip() must be first in a strip."); |
|
return (0); |
|
} |
|
|
|
if (TIFFRGBAImageOK(tif, emsg) && |
|
TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) |
|
{ |
|
|
|
img.row_offset = row; |
|
img.col_offset = 0; |
|
|
|
if (row + rowsperstrip > img.height) |
|
rows_to_read = img.height - row; |
|
else |
|
rows_to_read = rowsperstrip; |
|
|
|
ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read); |
|
|
|
TIFFRGBAImageEnd(&img); |
|
} |
|
else |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", emsg); |
|
ok = 0; |
|
} |
|
|
|
return (ok); |
|
} |
|
|
|
/* |
|
* Read a whole tile off data from the file, and convert to RGBA form. |
|
* The returned RGBA data is organized from bottom to top of tile, |
|
* and may include zeroed areas if the tile extends off the image. |
|
*/ |
|
|
|
int TIFFReadRGBATile(TIFF *tif, uint32_t col, uint32_t row, uint32_t *raster) |
|
|
|
{ |
|
return TIFFReadRGBATileExt(tif, col, row, raster, 0); |
|
} |
|
|
|
int TIFFReadRGBATileExt(TIFF *tif, uint32_t col, uint32_t row, uint32_t *raster, |
|
int stop_on_error) |
|
{ |
|
char emsg[EMSG_BUF_SIZE] = ""; |
|
TIFFRGBAImage img; |
|
int ok; |
|
uint32_t tile_xsize, tile_ysize; |
|
uint32_t read_xsize, read_ysize; |
|
uint32_t i_row; |
|
|
|
/* |
|
* Verify that our request is legal - on a tile file, and on a |
|
* tile boundary. |
|
*/ |
|
|
|
if (!TIFFIsTiled(tif)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), |
|
"Can't use TIFFReadRGBATile() with striped file."); |
|
return (0); |
|
} |
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); |
|
TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); |
|
if ((col % tile_xsize) != 0 || (row % tile_ysize) != 0) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), |
|
"Row/col passed to TIFFReadRGBATile() must be top" |
|
"left corner of a tile."); |
|
return (0); |
|
} |
|
|
|
/* |
|
* Setup the RGBA reader. |
|
*/ |
|
|
|
if (!TIFFRGBAImageOK(tif, emsg) || |
|
!TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) |
|
{ |
|
TIFFErrorExtR(tif, TIFFFileName(tif), "%s", emsg); |
|
return (0); |
|
} |
|
|
|
/* |
|
* The TIFFRGBAImageGet() function doesn't allow us to get off the |
|
* edge of the image, even to fill an otherwise valid tile. So we |
|
* figure out how much we can read, and fix up the tile buffer to |
|
* a full tile configuration afterwards. |
|
*/ |
|
|
|
if (row + tile_ysize > img.height) |
|
read_ysize = img.height - row; |
|
else |
|
read_ysize = tile_ysize; |
|
|
|
if (col + tile_xsize > img.width) |
|
read_xsize = img.width - col; |
|
else |
|
read_xsize = tile_xsize; |
|
|
|
/* |
|
* Read the chunk of imagery. |
|
*/ |
|
|
|
img.row_offset = row; |
|
img.col_offset = col; |
|
|
|
ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize); |
|
|
|
TIFFRGBAImageEnd(&img); |
|
|
|
/* |
|
* If our read was incomplete we will need to fix up the tile by |
|
* shifting the data around as if a full tile of data is being returned. |
|
* |
|
* This is all the more complicated because the image is organized in |
|
* bottom to top format. |
|
*/ |
|
|
|
if (read_xsize == tile_xsize && read_ysize == tile_ysize) |
|
return (ok); |
|
|
|
for (i_row = 0; i_row < read_ysize; i_row++) |
|
{ |
|
memmove(raster + (size_t)(tile_ysize - i_row - 1) * tile_xsize, |
|
raster + (size_t)(read_ysize - i_row - 1) * read_xsize, |
|
read_xsize * sizeof(uint32_t)); |
|
_TIFFmemset(raster + (size_t)(tile_ysize - i_row - 1) * tile_xsize + |
|
read_xsize, |
|
0, sizeof(uint32_t) * (tile_xsize - read_xsize)); |
|
} |
|
|
|
for (i_row = read_ysize; i_row < tile_ysize; i_row++) |
|
{ |
|
_TIFFmemset(raster + (size_t)(tile_ysize - i_row - 1) * tile_xsize, 0, |
|
sizeof(uint32_t) * tile_xsize); |
|
} |
|
|
|
return (ok); |
|
}
|
|
|