mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.8 KiB
222 lines
6.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
namespace cv |
|
{ |
|
|
|
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector(const Ptr<AdjusterAdapter>& a, |
|
int min_features, int max_features, int max_iters ) : |
|
escape_iters_(max_iters), min_features_(min_features), max_features_(max_features), adjuster_(a) |
|
{} |
|
|
|
bool DynamicAdaptedFeatureDetector::empty() const |
|
{ |
|
return adjuster_.empty() || adjuster_->empty(); |
|
} |
|
|
|
void DynamicAdaptedFeatureDetector::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const |
|
{ |
|
//for oscillation testing |
|
bool down = false; |
|
bool up = false; |
|
|
|
//flag for whether the correct threshhold has been reached |
|
bool thresh_good = false; |
|
|
|
Ptr<AdjusterAdapter> adjuster = adjuster_->clone(); |
|
|
|
//break if the desired number hasn't been reached. |
|
int iter_count = escape_iters_; |
|
|
|
while( iter_count > 0 && !(down && up) && !thresh_good && adjuster->good() ) |
|
{ |
|
keypoints.clear(); |
|
|
|
//the adjuster takes care of calling the detector with updated parameters |
|
adjuster->detect(image, keypoints,mask); |
|
|
|
if( int(keypoints.size()) < min_features_ ) |
|
{ |
|
down = true; |
|
adjuster->tooFew(min_features_, (int)keypoints.size()); |
|
} |
|
else if( int(keypoints.size()) > max_features_ ) |
|
{ |
|
up = true; |
|
adjuster->tooMany(max_features_, (int)keypoints.size()); |
|
} |
|
else |
|
thresh_good = true; |
|
|
|
iter_count--; |
|
} |
|
|
|
} |
|
|
|
FastAdjuster::FastAdjuster( int init_thresh, bool nonmax, int min_thresh, int max_thresh ) : |
|
thresh_(init_thresh), nonmax_(nonmax), init_thresh_(init_thresh), |
|
min_thresh_(min_thresh), max_thresh_(max_thresh) |
|
{} |
|
|
|
void FastAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const |
|
{ |
|
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask); |
|
} |
|
|
|
void FastAdjuster::tooFew(int, int) |
|
{ |
|
//fast is easy to adjust |
|
thresh_--; |
|
} |
|
|
|
void FastAdjuster::tooMany(int, int) |
|
{ |
|
//fast is easy to adjust |
|
thresh_++; |
|
} |
|
|
|
//return whether or not the threshhold is beyond |
|
//a useful point |
|
bool FastAdjuster::good() const |
|
{ |
|
return (thresh_ > min_thresh_) && (thresh_ < max_thresh_); |
|
} |
|
|
|
Ptr<AdjusterAdapter> FastAdjuster::clone() const |
|
{ |
|
Ptr<AdjusterAdapter> cloned_obj = new FastAdjuster( init_thresh_, nonmax_, min_thresh_, max_thresh_ ); |
|
return cloned_obj; |
|
} |
|
|
|
StarAdjuster::StarAdjuster(double initial_thresh, double min_thresh, double max_thresh) : |
|
thresh_(initial_thresh), init_thresh_(initial_thresh), |
|
min_thresh_(min_thresh), max_thresh_(max_thresh) |
|
{} |
|
|
|
void StarAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const |
|
{ |
|
StarFeatureDetector detector_tmp(16, cvRound(thresh_), 10, 8, 3); |
|
detector_tmp.detect(image, keypoints, mask); |
|
} |
|
|
|
void StarAdjuster::tooFew(int, int) |
|
{ |
|
thresh_ *= 0.9; |
|
if (thresh_ < 1.1) |
|
thresh_ = 1.1; |
|
} |
|
|
|
void StarAdjuster::tooMany(int, int) |
|
{ |
|
thresh_ *= 1.1; |
|
} |
|
|
|
bool StarAdjuster::good() const |
|
{ |
|
return (thresh_ > min_thresh_) && (thresh_ < max_thresh_); |
|
} |
|
|
|
Ptr<AdjusterAdapter> StarAdjuster::clone() const |
|
{ |
|
Ptr<AdjusterAdapter> cloned_obj = new StarAdjuster( init_thresh_, min_thresh_, max_thresh_ ); |
|
return cloned_obj; |
|
} |
|
|
|
SurfAdjuster::SurfAdjuster( double initial_thresh, double min_thresh, double max_thresh ) : |
|
thresh_(initial_thresh), init_thresh_(initial_thresh), |
|
min_thresh_(min_thresh), max_thresh_(max_thresh) |
|
{} |
|
|
|
void SurfAdjuster::detectImpl(const Mat& image, std::vector<KeyPoint>& keypoints, const cv::Mat& mask) const |
|
{ |
|
Ptr<FeatureDetector> surf = FeatureDetector::create("SURF"); |
|
surf->set("hessianThreshold", thresh_); |
|
surf->detect(image, keypoints, mask); |
|
} |
|
|
|
void SurfAdjuster::tooFew(int, int) |
|
{ |
|
thresh_ *= 0.9; |
|
if (thresh_ < 1.1) |
|
thresh_ = 1.1; |
|
} |
|
|
|
void SurfAdjuster::tooMany(int, int) |
|
{ |
|
thresh_ *= 1.1; |
|
} |
|
|
|
//return whether or not the threshhold is beyond |
|
//a useful point |
|
bool SurfAdjuster::good() const |
|
{ |
|
return (thresh_ > min_thresh_) && (thresh_ < max_thresh_); |
|
} |
|
|
|
Ptr<AdjusterAdapter> SurfAdjuster::clone() const |
|
{ |
|
Ptr<AdjusterAdapter> cloned_obj = new SurfAdjuster( init_thresh_, min_thresh_, max_thresh_ ); |
|
return cloned_obj; |
|
} |
|
|
|
Ptr<AdjusterAdapter> AdjusterAdapter::create( const String& detectorType ) |
|
{ |
|
Ptr<AdjusterAdapter> adapter; |
|
|
|
if( !detectorType.compare( "FAST" ) ) |
|
{ |
|
adapter = new FastAdjuster(); |
|
} |
|
else if( !detectorType.compare( "STAR" ) ) |
|
{ |
|
adapter = new StarAdjuster(); |
|
} |
|
else if( !detectorType.compare( "SURF" ) ) |
|
{ |
|
adapter = new SurfAdjuster(); |
|
} |
|
|
|
return adapter; |
|
} |
|
|
|
}
|
|
|