Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
16 KiB
350 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_CUDAFEATURES2D_HPP__ |
|
#define __OPENCV_CUDAFEATURES2D_HPP__ |
|
|
|
#ifndef __cplusplus |
|
# error cudafeatures2d.hpp header must be compiled as C++ |
|
#endif |
|
|
|
#include "opencv2/core/cuda.hpp" |
|
#include "opencv2/features2d.hpp" |
|
#include "opencv2/cudafilters.hpp" |
|
|
|
/** |
|
@addtogroup cuda |
|
@{ |
|
@defgroup cudafeatures2d Feature Detection and Description |
|
@} |
|
*/ |
|
|
|
namespace cv { namespace cuda { |
|
|
|
//! @addtogroup cudafeatures2d |
|
//! @{ |
|
|
|
/** @brief Brute-force descriptor matcher. |
|
|
|
For each descriptor in the first set, this matcher finds the closest descriptor in the second set |
|
by trying each one. This descriptor matcher supports masking permissible matches between descriptor |
|
sets. |
|
|
|
The class BFMatcher_CUDA has an interface similar to the class DescriptorMatcher. It has two groups |
|
of match methods: for matching descriptors of one image with another image or with an image set. |
|
Also, all functions have an alternative to save results either to the GPU memory or to the CPU |
|
memory. |
|
|
|
@sa DescriptorMatcher, BFMatcher |
|
*/ |
|
class CV_EXPORTS BFMatcher_CUDA |
|
{ |
|
public: |
|
explicit BFMatcher_CUDA(int norm = cv::NORM_L2); |
|
|
|
//! Add descriptors to train descriptor collection |
|
void add(const std::vector<GpuMat>& descCollection); |
|
|
|
//! Get train descriptors collection |
|
const std::vector<GpuMat>& getTrainDescriptors() const; |
|
|
|
//! Clear train descriptors collection |
|
void clear(); |
|
|
|
//! Return true if there are not train descriptors in collection |
|
bool empty() const; |
|
|
|
//! Return true if the matcher supports mask in match methods |
|
bool isMaskSupported() const; |
|
|
|
//! Find one best match for each query descriptor |
|
void matchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
//! Download trainIdx and distance and convert it to CPU vector with DMatch |
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches); |
|
//! Convert trainIdx and distance to vector with DMatch |
|
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches); |
|
|
|
//! Find one best match for each query descriptor |
|
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat()); |
|
|
|
//! Make gpu collection of trains and masks in suitable format for matchCollection function |
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>()); |
|
|
|
//! Find one best match from train collection for each query descriptor |
|
void matchCollection(const GpuMat& query, const GpuMat& trainCollection, |
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, |
|
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
//! Download trainIdx, imgIdx and distance and convert it to vector with DMatch |
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches); |
|
//! Convert trainIdx, imgIdx and distance to vector with DMatch |
|
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches); |
|
|
|
//! Find one best match from train collection for each query descriptor. |
|
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>()); |
|
|
|
//! Find k best matches for each query descriptor (in increasing order of distances) |
|
void knnMatchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
//! Download trainIdx and distance and convert it to vector with DMatch |
|
//! compactResult is used when mask is not empty. If compactResult is false matches |
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true |
|
//! matches vector will not contain matches for fully masked out query descriptors. |
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
//! Convert trainIdx and distance to vector with DMatch |
|
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
//! Find k best matches for each query descriptor (in increasing order of distances). |
|
//! compactResult is used when mask is not empty. If compactResult is false matches |
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true |
|
//! matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch(const GpuMat& query, const GpuMat& train, |
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(), |
|
bool compactResult = false); |
|
|
|
//! Find k best matches from train collection for each query descriptor (in increasing order of distances) |
|
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, |
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, |
|
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
//! Download trainIdx and distance and convert it to vector with DMatch |
|
//! compactResult is used when mask is not empty. If compactResult is false matches |
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true |
|
//! matches vector will not contain matches for fully masked out query descriptors. |
|
//! @see BFMatcher_CUDA::knnMatchDownload |
|
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
//! Convert trainIdx and distance to vector with DMatch |
|
//! @see BFMatcher_CUDA::knnMatchConvert |
|
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
//! Find k best matches for each query descriptor (in increasing order of distances). |
|
//! compactResult is used when mask is not empty. If compactResult is false matches |
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true |
|
//! matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false); |
|
|
|
//! Find best matches for each query descriptor which have distance less than maxDistance. |
|
//! nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx. |
|
//! carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, |
|
//! because it didn't have enough memory. |
|
//! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10), |
|
//! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches |
|
//! Matches doesn't sorted. |
|
void radiusMatchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
//! Download trainIdx, nMatches and distance and convert it to vector with DMatch. |
|
//! matches will be sorted in increasing order of distances. |
|
//! compactResult is used when mask is not empty. If compactResult is false matches |
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true |
|
//! matches vector will not contain matches for fully masked out query descriptors. |
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
//! Convert trainIdx, nMatches and distance to vector with DMatch. |
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
//! Find best matches for each query descriptor which have distance less than maxDistance |
|
//! in increasing order of distances). |
|
void radiusMatch(const GpuMat& query, const GpuMat& train, |
|
std::vector< std::vector<DMatch> >& matches, float maxDistance, |
|
const GpuMat& mask = GpuMat(), bool compactResult = false); |
|
|
|
//! Find best matches for each query descriptor which have distance less than maxDistance. |
|
//! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10), |
|
//! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches |
|
//! Matches doesn't sorted. |
|
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null()); |
|
|
|
//! Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch. |
|
//! matches will be sorted in increasing order of distances. |
|
//! compactResult is used when mask is not empty. If compactResult is false matches |
|
//! vector will have the same size as queryDescriptors rows. If compactResult is true |
|
//! matches vector will not contain matches for fully masked out query descriptors. |
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
//! Convert trainIdx, nMatches and distance to vector with DMatch. |
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
//! Find best matches from train collection for each query descriptor which have distance less than |
|
//! maxDistance (in increasing order of distances). |
|
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false); |
|
|
|
int norm; |
|
|
|
private: |
|
std::vector<GpuMat> trainDescCollection; |
|
}; |
|
|
|
// |
|
// Feature2DAsync |
|
// |
|
|
|
/** @brief Abstract base class for CUDA asynchronous 2D image feature detectors and descriptor extractors. |
|
*/ |
|
class CV_EXPORTS Feature2DAsync |
|
{ |
|
public: |
|
virtual ~Feature2DAsync(); |
|
|
|
/** @brief Detects keypoints in an image. |
|
|
|
@param image Image. |
|
@param keypoints The detected keypoints. |
|
@param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer |
|
matrix with non-zero values in the region of interest. |
|
@param stream CUDA stream. |
|
*/ |
|
virtual void detectAsync(InputArray image, |
|
OutputArray keypoints, |
|
InputArray mask = noArray(), |
|
Stream& stream = Stream::Null()); |
|
|
|
/** @brief Computes the descriptors for a set of keypoints detected in an image. |
|
|
|
@param image Image. |
|
@param keypoints Input collection of keypoints. |
|
@param descriptors Computed descriptors. Row j is the descriptor for j-th keypoint. |
|
@param stream CUDA stream. |
|
*/ |
|
virtual void computeAsync(InputArray image, |
|
OutputArray keypoints, |
|
OutputArray descriptors, |
|
Stream& stream = Stream::Null()); |
|
|
|
/** Detects keypoints and computes the descriptors. */ |
|
virtual void detectAndComputeAsync(InputArray image, |
|
InputArray mask, |
|
OutputArray keypoints, |
|
OutputArray descriptors, |
|
bool useProvidedKeypoints = false, |
|
Stream& stream = Stream::Null()); |
|
|
|
/** Converts keypoints array from internal representation to standard vector. */ |
|
virtual void convert(InputArray gpu_keypoints, |
|
std::vector<KeyPoint>& keypoints) = 0; |
|
}; |
|
|
|
// |
|
// FastFeatureDetector |
|
// |
|
|
|
/** @brief Wrapping class for feature detection using the FAST method. |
|
*/ |
|
class CV_EXPORTS FastFeatureDetector : public cv::FastFeatureDetector, public Feature2DAsync |
|
{ |
|
public: |
|
enum |
|
{ |
|
LOCATION_ROW = 0, |
|
RESPONSE_ROW, |
|
ROWS_COUNT, |
|
|
|
FEATURE_SIZE = 7 |
|
}; |
|
|
|
static Ptr<FastFeatureDetector> create(int threshold=10, |
|
bool nonmaxSuppression=true, |
|
int type=FastFeatureDetector::TYPE_9_16, |
|
int max_npoints = 5000); |
|
|
|
virtual void setMaxNumPoints(int max_npoints) = 0; |
|
virtual int getMaxNumPoints() const = 0; |
|
}; |
|
|
|
// |
|
// ORB |
|
// |
|
|
|
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor |
|
* |
|
* @sa cv::ORB |
|
*/ |
|
class CV_EXPORTS ORB : public cv::ORB, public Feature2DAsync |
|
{ |
|
public: |
|
enum |
|
{ |
|
X_ROW = 0, |
|
Y_ROW, |
|
RESPONSE_ROW, |
|
ANGLE_ROW, |
|
OCTAVE_ROW, |
|
SIZE_ROW, |
|
ROWS_COUNT |
|
}; |
|
|
|
static Ptr<ORB> create(int nfeatures=500, |
|
float scaleFactor=1.2f, |
|
int nlevels=8, |
|
int edgeThreshold=31, |
|
int firstLevel=0, |
|
int WTA_K=2, |
|
int scoreType=ORB::HARRIS_SCORE, |
|
int patchSize=31, |
|
int fastThreshold=20, |
|
bool blurForDescriptor=false); |
|
|
|
//! if true, image will be blurred before descriptors calculation |
|
virtual void setBlurForDescriptor(bool blurForDescriptor) = 0; |
|
virtual bool getBlurForDescriptor() const = 0; |
|
}; |
|
|
|
//! @} |
|
|
|
}} // namespace cv { namespace cuda { |
|
|
|
#endif /* __OPENCV_CUDAFEATURES2D_HPP__ */
|
|
|