mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.9 KiB
151 lines
5.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
class GFTTDetector_Impl CV_FINAL : public GFTTDetector |
|
{ |
|
public: |
|
GFTTDetector_Impl( int _nfeatures, double _qualityLevel, |
|
double _minDistance, int _blockSize, int _gradientSize, |
|
bool _useHarrisDetector, double _k ) |
|
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance), |
|
blockSize(_blockSize), gradSize(_gradientSize), useHarrisDetector(_useHarrisDetector), k(_k) |
|
{ |
|
} |
|
|
|
void setMaxFeatures(int maxFeatures) CV_OVERRIDE { nfeatures = maxFeatures; } |
|
int getMaxFeatures() const CV_OVERRIDE { return nfeatures; } |
|
|
|
void setQualityLevel(double qlevel) CV_OVERRIDE { qualityLevel = qlevel; } |
|
double getQualityLevel() const CV_OVERRIDE { return qualityLevel; } |
|
|
|
void setMinDistance(double minDistance_) CV_OVERRIDE { minDistance = minDistance_; } |
|
double getMinDistance() const CV_OVERRIDE { return minDistance; } |
|
|
|
void setBlockSize(int blockSize_) CV_OVERRIDE { blockSize = blockSize_; } |
|
int getBlockSize() const CV_OVERRIDE { return blockSize; } |
|
|
|
//void setGradientSize(int gradientSize_) { gradSize = gradientSize_; } |
|
//int getGradientSize() { return gradSize; } |
|
|
|
void setHarrisDetector(bool val) CV_OVERRIDE { useHarrisDetector = val; } |
|
bool getHarrisDetector() const CV_OVERRIDE { return useHarrisDetector; } |
|
|
|
void setK(double k_) CV_OVERRIDE { k = k_; } |
|
double getK() const CV_OVERRIDE { return k; } |
|
|
|
void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
if(_image.empty()) |
|
{ |
|
keypoints.clear(); |
|
return; |
|
} |
|
|
|
std::vector<Point2f> corners; |
|
|
|
if (_image.isUMat()) |
|
{ |
|
UMat ugrayImage; |
|
if( _image.type() != CV_8U ) |
|
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY ); |
|
else |
|
ugrayImage = _image.getUMat(); |
|
|
|
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask, |
|
blockSize, gradSize, useHarrisDetector, k ); |
|
} |
|
else |
|
{ |
|
Mat image = _image.getMat(), grayImage = image; |
|
if( image.type() != CV_8U ) |
|
cvtColor( image, grayImage, COLOR_BGR2GRAY ); |
|
|
|
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask, |
|
blockSize, gradSize, useHarrisDetector, k ); |
|
} |
|
|
|
keypoints.resize(corners.size()); |
|
std::vector<Point2f>::const_iterator corner_it = corners.begin(); |
|
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin(); |
|
for( ; corner_it != corners.end() && keypoint_it != keypoints.end(); ++corner_it, ++keypoint_it ) |
|
*keypoint_it = KeyPoint( *corner_it, (float)blockSize ); |
|
|
|
} |
|
|
|
int nfeatures; |
|
double qualityLevel; |
|
double minDistance; |
|
int blockSize; |
|
int gradSize; |
|
bool useHarrisDetector; |
|
double k; |
|
}; |
|
|
|
|
|
Ptr<GFTTDetector> GFTTDetector::create( int _nfeatures, double _qualityLevel, |
|
double _minDistance, int _blockSize, int _gradientSize, |
|
bool _useHarrisDetector, double _k ) |
|
{ |
|
return makePtr<GFTTDetector_Impl>(_nfeatures, _qualityLevel, |
|
_minDistance, _blockSize, _gradientSize, _useHarrisDetector, _k); |
|
} |
|
|
|
Ptr<GFTTDetector> GFTTDetector::create( int _nfeatures, double _qualityLevel, |
|
double _minDistance, int _blockSize, |
|
bool _useHarrisDetector, double _k ) |
|
{ |
|
return makePtr<GFTTDetector_Impl>(_nfeatures, _qualityLevel, |
|
_minDistance, _blockSize, 3, _useHarrisDetector, _k); |
|
} |
|
|
|
String GFTTDetector::getDefaultName() const |
|
{ |
|
return (Feature2D::getDefaultName() + ".GFTTDetector"); |
|
} |
|
|
|
}
|
|
|