Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

403 lines
17 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
#if !defined (HAVE_OPENCL)
void cv::ocl::HoughCircles(const oclMat&, oclMat&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::ocl::HoughCircles(const oclMat&, oclMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::ocl::HoughCirclesDownload(const oclMat&, OutputArray) { throw_nogpu(); }
#else /* !defined (HAVE_OPENCL) */
#define MUL_UP(a, b) ((a)/(b)+1)*(b)
namespace cv { namespace ocl {
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *imgproc_hough;
}}
//////////////////////////////////////////////////////////
// common functions
namespace
{
int buildPointList_gpu(const oclMat& src, oclMat& list)
{
const int PIXELS_PER_THREAD = 16;
int totalCount = 0;
int err = CL_SUCCESS;
cl_mem counter = clCreateBuffer((cl_context)src.clCxt->oclContext(),
CL_MEM_COPY_HOST_PTR,
sizeof(int),
&totalCount,
&err);
openCLSafeCall(err);
const size_t blkSizeX = 32;
const size_t blkSizeY = 4;
size_t localThreads[3] = { blkSizeX, blkSizeY, 1 };
const int PIXELS_PER_BLOCK = blkSizeX * PIXELS_PER_THREAD;
const size_t glbSizeX = src.cols % (PIXELS_PER_BLOCK) == 0 ? src.cols : MUL_UP(src.cols, PIXELS_PER_BLOCK);
const size_t glbSizeY = src.rows % blkSizeY == 0 ? src.rows : MUL_UP(src.rows, blkSizeY);
size_t globalThreads[3] = { glbSizeX, glbSizeY, 1 };
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter ));
openCLExecuteKernel(src.clCxt, &imgproc_hough, "buildPointList", globalThreads, localThreads, args, -1, -1);
openCLSafeCall(clEnqueueReadBuffer((cl_command_queue)src.clCxt->oclCommandQueue(), counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL));
openCLSafeCall(clReleaseMemObject(counter));
return totalCount;
}
}
//////////////////////////////////////////////////////////
// HoughCircles
namespace
{
void circlesAccumCenters_gpu(const oclMat& list, int count, const oclMat& dx, const oclMat& dy, oclMat& accum, int minRadius, int maxRadius, float idp)
{
const size_t blkSizeX = 256;
size_t localThreads[3] = { 256, 1, 1 };
const size_t glbSizeX = count % blkSizeX == 0 ? count : MUL_UP(count, blkSizeX);
size_t globalThreads[3] = { glbSizeX, 1, 1 };
const int width = accum.cols - 2;
const int height = accum.rows - 2;
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&count ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dx.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dx.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dy.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dy.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&accum.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.step ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&width ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&height ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minRadius));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxRadius));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&idp));
openCLExecuteKernel(accum.clCxt, &imgproc_hough, "circlesAccumCenters", globalThreads, localThreads, args, -1, -1);
}
int buildCentersList_gpu(const oclMat& accum, oclMat& centers, int threshold)
{
int totalCount = 0;
int err = CL_SUCCESS;
cl_mem counter = clCreateBuffer((cl_context)accum.clCxt->oclContext(),
CL_MEM_COPY_HOST_PTR,
sizeof(int),
&totalCount,
&err);
openCLSafeCall(err);
const size_t blkSizeX = 32;
const size_t blkSizeY = 8;
size_t localThreads[3] = { blkSizeX, blkSizeY, 1 };
const size_t glbSizeX = (accum.cols - 2) % blkSizeX == 0 ? accum.cols - 2 : MUL_UP(accum.cols - 2, blkSizeX);
const size_t glbSizeY = (accum.rows - 2) % blkSizeY == 0 ? accum.rows - 2 : MUL_UP(accum.rows - 2, blkSizeY);
size_t globalThreads[3] = { glbSizeX, glbSizeY, 1 };
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&accum.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.cols ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.rows ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&accum.step ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&centers.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&threshold ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter ));
openCLExecuteKernel(accum.clCxt, &imgproc_hough, "buildCentersList", globalThreads, localThreads, args, -1, -1);
openCLSafeCall(clEnqueueReadBuffer((cl_command_queue)accum.clCxt->oclCommandQueue(), counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL));
openCLSafeCall(clReleaseMemObject(counter));
return totalCount;
}
int circlesAccumRadius_gpu(const oclMat& centers, int centersCount,
const oclMat& list, int count,
oclMat& circles, int maxCircles,
float dp, int minRadius, int maxRadius, int threshold)
{
int totalCount = 0;
int err = CL_SUCCESS;
cl_mem counter = clCreateBuffer((cl_context)circles.clCxt->oclContext(),
CL_MEM_COPY_HOST_PTR,
sizeof(int),
&totalCount,
&err);
openCLSafeCall(err);
const size_t blkSizeX = circles.clCxt->maxWorkGroupSize();
size_t localThreads[3] = { blkSizeX, 1, 1 };
const size_t glbSizeX = centersCount * blkSizeX;
size_t globalThreads[3] = { glbSizeX, 1, 1 };
const int histSize = maxRadius - minRadius + 1;
size_t smemSize = (histSize + 2) * sizeof(int);
std::vector<std::pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&centers.data ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&list.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&count ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&circles.data ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxCircles ));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&dp ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minRadius ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&maxRadius ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&histSize ));
args.push_back( std::make_pair( sizeof(cl_int) , (void *)&threshold ));
args.push_back( std::make_pair( smemSize , (void *)NULL ));
args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&counter ));
CV_Assert(circles.offset == 0);
openCLExecuteKernel(circles.clCxt, &imgproc_hough, "circlesAccumRadius", globalThreads, localThreads, args, -1, -1);
openCLSafeCall(clEnqueueReadBuffer((cl_command_queue)circles.clCxt->oclCommandQueue(), counter, CL_TRUE, 0, sizeof(int), &totalCount, 0, NULL, NULL));
openCLSafeCall(clReleaseMemObject(counter));
totalCount = std::min(totalCount, maxCircles);
return totalCount;
}
} // namespace
void cv::ocl::HoughCircles(const oclMat& src, oclMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
HoughCirclesBuf buf;
HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
}
void cv::ocl::HoughCircles(const oclMat& src, oclMat& circles, HoughCirclesBuf& buf, int method,
float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
CV_Assert(src.type() == CV_8UC1);
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
CV_Assert(method == CV_HOUGH_GRADIENT);
CV_Assert(dp > 0);
CV_Assert(minRadius > 0 && maxRadius > minRadius);
CV_Assert(cannyThreshold > 0);
CV_Assert(votesThreshold > 0);
CV_Assert(maxCircles > 0);
const float idp = 1.0f / dp;
cv::ocl::Canny(src, buf.cannyBuf, buf.edges, std::max(cannyThreshold / 2, 1), cannyThreshold);
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.srcPoints);
const int pointsCount = buildPointList_gpu(buf.edges, buf.srcPoints);
if (pointsCount == 0)
{
circles.release();
return;
}
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum);
buf.accum.setTo(Scalar::all(0));
circlesAccumCenters_gpu(buf.srcPoints, pointsCount, buf.cannyBuf.dx, buf.cannyBuf.dy, buf.accum, minRadius, maxRadius, idp);
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.centers);
int centersCount = buildCentersList_gpu(buf.accum, buf.centers, votesThreshold);
if (centersCount == 0)
{
circles.release();
return;
}
if (minDist > 1)
{
cv::AutoBuffer<unsigned int> oldBuf_(centersCount);
cv::AutoBuffer<unsigned int> newBuf_(centersCount);
int newCount = 0;
unsigned int* oldBuf = oldBuf_;
unsigned int* newBuf = newBuf_;
openCLSafeCall(clEnqueueReadBuffer((cl_command_queue)buf.centers.clCxt->oclCommandQueue(),
(cl_mem)buf.centers.data,
CL_TRUE,
0,
centersCount * sizeof(unsigned int),
oldBuf,
0,
NULL,
NULL));
const int cellSize = cvRound(minDist);
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
std::vector< std::vector<unsigned int> > grid(gridWidth * gridHeight);
const float minDist2 = minDist * minDist;
for (int i = 0; i < centersCount; ++i)
{
unsigned int p = oldBuf[i];
const int px = p & 0xFFFF;
const int py = (p >> 16) & 0xFFFF;
bool good = true;
int xCell = static_cast<int>(px / cellSize);
int yCell = static_cast<int>(py / cellSize);
int x1 = xCell - 1;
int y1 = yCell - 1;
int x2 = xCell + 1;
int y2 = yCell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(gridWidth - 1, x2);
y2 = std::min(gridHeight - 1, y2);
for (int yy = y1; yy <= y2; ++yy)
{
for (int xx = x1; xx <= x2; ++xx)
{
std::vector<unsigned int>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
const int val = m[j];
const int jx = val & 0xFFFF;
const int jy = (val >> 16) & 0xFFFF;
float dx = (float)(px - jx);
float dy = (float)(py - jy);
if (dx * dx + dy * dy < minDist2)
{
good = false;
goto break_out;
}
}
}
}
break_out:
if(good)
{
grid[yCell * gridWidth + xCell].push_back(p);
newBuf[newCount++] = p;
}
}
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)buf.centers.clCxt->oclCommandQueue(),
(cl_mem)buf.centers.data,
CL_TRUE,
0,
newCount * sizeof(unsigned int),
newBuf,
0,
0,
0));
centersCount = newCount;
}
ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles);
const int circlesCount = circlesAccumRadius_gpu(buf.centers, centersCount,
buf.srcPoints, pointsCount,
circles, maxCircles,
dp, minRadius, maxRadius, votesThreshold);
if (circlesCount > 0)
circles.cols = circlesCount;
else
circles.release();
}
void cv::ocl::HoughCirclesDownload(const oclMat& d_circles, cv::OutputArray h_circles_)
{
// FIX ME: garbage values are copied!
CV_Error(CV_StsNotImplemented, "HoughCirclesDownload is not implemented");
if (d_circles.empty())
{
h_circles_.release();
return;
}
CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3);
h_circles_.create(1, d_circles.cols, CV_32FC3);
Mat h_circles = h_circles_.getMat();
d_circles.download(h_circles);
}
#endif /* !defined (HAVE_OPENCL) */