Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

406 lines
17 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *imgproc_canny;
}
}
cv::ocl::CannyBuf::CannyBuf(const oclMat &dx_, const oclMat &dy_) : dx(dx_), dy(dy_), counter(NULL)
{
CV_Assert(dx_.type() == CV_32SC1 && dy_.type() == CV_32SC1 && dx_.size() == dy_.size());
create(dx_.size(), -1);
}
void cv::ocl::CannyBuf::create(const Size &image_size, int apperture_size)
{
ensureSizeIsEnough(image_size, CV_32SC1, dx);
ensureSizeIsEnough(image_size, CV_32SC1, dy);
if(apperture_size == 3)
{
ensureSizeIsEnough(image_size, CV_32SC1, dx_buf);
ensureSizeIsEnough(image_size, CV_32SC1, dy_buf);
}
else if(apperture_size > 0)
{
Mat kx, ky;
if (!filterDX)
{
filterDX = createDerivFilter_GPU(CV_8U, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE);
}
if (!filterDY)
{
filterDY = createDerivFilter_GPU(CV_8U, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE);
}
}
ensureSizeIsEnough(image_size.height + 2, image_size.width + 2, CV_32FC1, edgeBuf);
ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf1);
ensureSizeIsEnough(1, image_size.width * image_size.height, CV_16UC2, trackBuf2);
int counter_i [1] = { 0 };
int err = 0;
if(counter)
{
openCLFree(counter);
}
counter = clCreateBuffer( (cl_context)getoclContext(), CL_MEM_COPY_HOST_PTR, sizeof(int), counter_i, &err );
openCLSafeCall(err);
}
void cv::ocl::CannyBuf::release()
{
dx.release();
dy.release();
dx_buf.release();
dy_buf.release();
edgeBuf.release();
trackBuf1.release();
trackBuf2.release();
openCLFree(counter);
}
namespace cv
{
namespace ocl
{
namespace canny
{
void calcSobelRowPass_gpu(const oclMat &src, oclMat &dx_buf, oclMat &dy_buf, int rows, int cols);
void calcMagnitude_gpu(const oclMat &dx_buf, const oclMat &dy_buf, oclMat &dx, oclMat &dy, oclMat &mag, int rows, int cols, bool L2Grad);
void calcMagnitude_gpu(const oclMat &dx, const oclMat &dy, oclMat &mag, int rows, int cols, bool L2Grad);
void calcMap_gpu(oclMat &dx, oclMat &dy, oclMat &mag, oclMat &map, int rows, int cols, float low_thresh, float high_thresh);
void edgesHysteresisLocal_gpu(oclMat &map, oclMat &st1, void *counter, int rows, int cols);
void edgesHysteresisGlobal_gpu(oclMat &map, oclMat &st1, oclMat &st2, void *counter, int rows, int cols);
void getEdges_gpu(oclMat &map, oclMat &dst, int rows, int cols);
}
}
}// cv::ocl
namespace
{
void CannyCaller(CannyBuf &buf, oclMat &dst, float low_thresh, float high_thresh)
{
using namespace ::cv::ocl::canny;
calcMap_gpu(buf.dx, buf.dy, buf.edgeBuf, buf.edgeBuf, dst.rows, dst.cols, low_thresh, high_thresh);
edgesHysteresisLocal_gpu(buf.edgeBuf, buf.trackBuf1, buf.counter, dst.rows, dst.cols);
edgesHysteresisGlobal_gpu(buf.edgeBuf, buf.trackBuf1, buf.trackBuf2, buf.counter, dst.rows, dst.cols);
getEdges_gpu(buf.edgeBuf, dst, dst.rows, dst.cols);
}
}
void cv::ocl::Canny(const oclMat &src, oclMat &dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
CannyBuf buf(src.size(), apperture_size);
Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient);
}
void cv::ocl::Canny(const oclMat &src, CannyBuf &buf, oclMat &dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
using namespace ::cv::ocl::canny;
CV_Assert(src.type() == CV_8UC1);
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh );
dst.create(src.size(), CV_8U);
dst.setTo(Scalar::all(0));
buf.create(src.size(), apperture_size);
buf.edgeBuf.setTo(Scalar::all(0));
if (apperture_size == 3)
{
calcSobelRowPass_gpu(src, buf.dx_buf, buf.dy_buf, src.rows, src.cols);
calcMagnitude_gpu(buf.dx_buf, buf.dy_buf, buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
}
else
{
buf.filterDX->apply(src, buf.dx);
buf.filterDY->apply(src, buf.dy);
calcMagnitude_gpu(buf.dx, buf.dy, buf.edgeBuf, src.rows, src.cols, L2gradient);
}
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
void cv::ocl::Canny(const oclMat &dx, const oclMat &dy, oclMat &dst, double low_thresh, double high_thresh, bool L2gradient)
{
CannyBuf buf(dx, dy);
Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient);
}
void cv::ocl::Canny(const oclMat &dx, const oclMat &dy, CannyBuf &buf, oclMat &dst, double low_thresh, double high_thresh, bool L2gradient)
{
using namespace ::cv::ocl::canny;
CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size());
if( low_thresh > high_thresh )
std::swap( low_thresh, high_thresh);
dst.create(dx.size(), CV_8U);
dst.setTo(Scalar::all(0));
buf.dx = dx;
buf.dy = dy;
buf.create(dx.size(), -1);
buf.edgeBuf.setTo(Scalar::all(0));
calcMagnitude_gpu(buf.dx, buf.dy, buf.edgeBuf, dx.rows, dx.cols, L2gradient);
CannyCaller(buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
void canny::calcSobelRowPass_gpu(const oclMat &src, oclMat &dx_buf, oclMat &dy_buf, int rows, int cols)
{
Context *clCxt = src.clCxt;
cv::String kernelName = "calcSobelRowPass";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dx_buf.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dy_buf.data));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx_buf.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx_buf.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy_buf.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy_buf.offset));
size_t globalThreads[3] = {cols, rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1);
}
void canny::calcMagnitude_gpu(const oclMat &dx_buf, const oclMat &dy_buf, oclMat &dx, oclMat &dy, oclMat &mag, int rows, int cols, bool L2Grad)
{
Context *clCxt = dx_buf.clCxt;
cv::String kernelName = "calcMagnitude_buf";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dx_buf.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dy_buf.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dx.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dy.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mag.data));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx_buf.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx_buf.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy_buf.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy_buf.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mag.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mag.offset));
size_t globalThreads[3] = {cols, rows, 1};
size_t localThreads[3] = {16, 16, 1};
char build_options [15] = "";
if(L2Grad)
{
strcat(build_options, "-D L2GRAD");
}
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1, build_options);
}
void canny::calcMagnitude_gpu(const oclMat &dx, const oclMat &dy, oclMat &mag, int rows, int cols, bool L2Grad)
{
Context *clCxt = dx.clCxt;
cv::String kernelName = "calcMagnitude";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dx.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dy.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mag.data));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mag.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mag.offset));
size_t globalThreads[3] = {cols, rows, 1};
size_t localThreads[3] = {16, 16, 1};
char build_options [15] = "";
if(L2Grad)
{
strcat(build_options, "-D L2GRAD");
}
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1, build_options);
}
void canny::calcMap_gpu(oclMat &dx, oclMat &dy, oclMat &mag, oclMat &map, int rows, int cols, float low_thresh, float high_thresh)
{
Context *clCxt = dx.clCxt;
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dx.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dy.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mag.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&map.data));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&low_thresh));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&high_thresh));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dx.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dy.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mag.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&mag.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.offset));
size_t globalThreads[3] = {cols, rows, 1};
cv::String kernelName = "calcMap";
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1);
}
void canny::edgesHysteresisLocal_gpu(oclMat &map, oclMat &st1, void *counter, int rows, int cols)
{
Context *clCxt = map.clCxt;
cv::String kernelName = "edgesHysteresisLocal";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&map.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&st1.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&counter));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.offset));
size_t globalThreads[3] = {cols, rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1);
}
void canny::edgesHysteresisGlobal_gpu(oclMat &map, oclMat &st1, oclMat &st2, void *counter, int rows, int cols)
{
unsigned int count;
openCLSafeCall(clEnqueueReadBuffer((cl_command_queue)getoclCommandQueue(), (cl_mem)counter, 1, 0, sizeof(float), &count, 0, NULL, NULL));
Context *clCxt = map.clCxt;
cv::String kernelName = "edgesHysteresisGlobal";
std::vector< std::pair<size_t, const void *> > args;
size_t localThreads[3] = {128, 1, 1};
#define DIVUP(a, b) ((a)+(b)-1)/(b)
int count_i[1] = {0};
while(count > 0)
{
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)getoclCommandQueue(), (cl_mem)counter, 1, 0, sizeof(int), &count_i, 0, NULL, NULL));
args.clear();
size_t globalThreads[3] = {std::min(count, 65535u) * 128, DIVUP(count, 65535), 1};
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&map.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&st1.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&st2.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&counter));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&count));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.offset));
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1, DISABLE);
openCLSafeCall(clEnqueueReadBuffer((cl_command_queue)getoclCommandQueue(), (cl_mem)counter, 1, 0, sizeof(int), &count, 0, NULL, NULL));
std::swap(st1, st2);
}
#undef DIVUP
}
void canny::getEdges_gpu(oclMat &map, oclMat &dst, int rows, int cols)
{
Context *clCxt = map.clCxt;
cv::String kernelName = "getEdges";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&map.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&map.offset));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset));
size_t globalThreads[3] = {cols, rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel2(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1);
}