mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
396 lines
14 KiB
396 lines
14 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include "npy_blob.hpp" |
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename, bool required = true) |
|
{ |
|
String rootFolder = "dnn/"; |
|
return findDataFile(rootFolder + filename, required); |
|
} |
|
|
|
|
|
class Test_Model : public DNNTestLayer |
|
{ |
|
public: |
|
void testDetectModel(const std::string& weights, const std::string& cfg, |
|
const std::string& imgPath, const std::vector<int>& refClassIds, |
|
const std::vector<float>& refConfidences, |
|
const std::vector<Rect2d>& refBoxes, |
|
double scoreDiff, double iouDiff, |
|
double confThreshold = 0.24, double nmsThreshold = 0.0, |
|
const Size& size = {-1, -1}, Scalar mean = Scalar(), |
|
double scale = 1.0, bool swapRB = false, bool crop = false) |
|
{ |
|
checkBackend(); |
|
|
|
Mat frame = imread(imgPath); |
|
DetectionModel model(weights, cfg); |
|
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale) |
|
.setInputSwapRB(swapRB).setInputCrop(crop); |
|
|
|
model.setPreferableBackend(backend); |
|
model.setPreferableTarget(target); |
|
|
|
std::vector<int> classIds; |
|
std::vector<float> confidences; |
|
std::vector<Rect> boxes; |
|
|
|
model.detect(frame, classIds, confidences, boxes, confThreshold, nmsThreshold); |
|
|
|
std::vector<Rect2d> boxesDouble(boxes.size()); |
|
for (int i = 0; i < boxes.size(); i++) { |
|
boxesDouble[i] = boxes[i]; |
|
} |
|
normAssertDetections(refClassIds, refConfidences, refBoxes, classIds, |
|
confidences, boxesDouble, "", |
|
confThreshold, scoreDiff, iouDiff); |
|
} |
|
|
|
void testClassifyModel(const std::string& weights, const std::string& cfg, |
|
const std::string& imgPath, std::pair<int, float> ref, float norm, |
|
const Size& size = {-1, -1}, Scalar mean = Scalar(), |
|
double scale = 1.0, bool swapRB = false, bool crop = false) |
|
{ |
|
checkBackend(); |
|
|
|
Mat frame = imread(imgPath); |
|
ClassificationModel model(weights, cfg); |
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale) |
|
.setInputSwapRB(swapRB).setInputCrop(crop); |
|
|
|
std::pair<int, float> prediction = model.classify(frame); |
|
EXPECT_EQ(prediction.first, ref.first); |
|
ASSERT_NEAR(prediction.second, ref.second, norm); |
|
} |
|
|
|
void testKeypointsModel(const std::string& weights, const std::string& cfg, |
|
const Mat& frame, const Mat& exp, float norm, |
|
const Size& size = {-1, -1}, Scalar mean = Scalar(), |
|
double scale = 1.0, bool swapRB = false, bool crop = false) |
|
{ |
|
checkBackend(); |
|
|
|
std::vector<Point2f> points; |
|
|
|
KeypointsModel model(weights, cfg); |
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale) |
|
.setInputSwapRB(swapRB).setInputCrop(crop); |
|
|
|
model.setPreferableBackend(backend); |
|
model.setPreferableTarget(target); |
|
|
|
points = model.estimate(frame, 0.5); |
|
|
|
Mat out = Mat(points).reshape(1); |
|
normAssert(exp, out, "", norm, norm); |
|
} |
|
|
|
void testSegmentationModel(const std::string& weights_file, const std::string& config_file, |
|
const std::string& inImgPath, const std::string& outImgPath, |
|
float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(), |
|
double scale = 1.0, bool swapRB = false, bool crop = false) |
|
{ |
|
checkBackend(); |
|
|
|
Mat frame = imread(inImgPath); |
|
Mat mask; |
|
Mat exp = imread(outImgPath, 0); |
|
|
|
SegmentationModel model(weights_file, config_file); |
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale) |
|
.setInputSwapRB(swapRB).setInputCrop(crop); |
|
|
|
model.segment(frame, mask); |
|
normAssert(mask, exp, "", norm, norm); |
|
} |
|
}; |
|
|
|
TEST_P(Test_Model, Classify) |
|
{ |
|
std::pair<int, float> ref(652, 0.641789); |
|
|
|
std::string img_path = _tf("grace_hopper_227.png"); |
|
std::string config_file = _tf("bvlc_alexnet.prototxt"); |
|
std::string weights_file = _tf("bvlc_alexnet.caffemodel", false); |
|
|
|
Size size{227, 227}; |
|
float norm = 1e-4; |
|
|
|
testClassifyModel(weights_file, config_file, img_path, ref, norm, size); |
|
} |
|
|
|
|
|
TEST_P(Test_Model, DetectRegion) |
|
{ |
|
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
|
|
std::vector<int> refClassIds = {6, 1, 11}; |
|
std::vector<float> refConfidences = {0.750469f, 0.780879f, 0.901615f}; |
|
std::vector<Rect2d> refBoxes = {Rect2d(240, 53, 135, 72), |
|
Rect2d(112, 109, 192, 200), |
|
Rect2d(58, 141, 117, 249)}; |
|
|
|
std::string img_path = _tf("dog416.png"); |
|
std::string weights_file = _tf("yolo-voc.weights", false); |
|
std::string config_file = _tf("yolo-voc.cfg"); |
|
|
|
double scale = 1.0 / 255.0; |
|
Size size{416, 416}; |
|
bool swapRB = true; |
|
|
|
double confThreshold = 0.24; |
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4; |
|
double scoreDiff = 8e-5, iouDiff = 1e-5; |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 1e-2; |
|
iouDiff = 1.6e-2; |
|
} |
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, |
|
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size, |
|
Scalar(), scale, swapRB); |
|
} |
|
|
|
TEST_P(Test_Model, DetectionOutput) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
|
|
if (target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
|
|
std::vector<int> refClassIds = {7, 12}; |
|
std::vector<float> refConfidences = {0.991359f, 0.94786f}; |
|
std::vector<Rect2d> refBoxes = {Rect2d(491, 81, 212, 98), |
|
Rect2d(132, 223, 207, 344)}; |
|
|
|
std::string img_path = _tf("dog416.png"); |
|
std::string weights_file = _tf("resnet50_rfcn_final.caffemodel", false); |
|
std::string config_file = _tf("rfcn_pascal_voc_resnet50.prototxt"); |
|
|
|
Scalar mean = Scalar(102.9801, 115.9465, 122.7717); |
|
Size size{800, 600}; |
|
|
|
double scoreDiff = default_l1, iouDiff = 1e-5; |
|
float confThreshold = 0.8; |
|
double nmsThreshold = 0.0; |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV) |
|
scoreDiff = 4e-3; |
|
else |
|
scoreDiff = 2e-2; |
|
iouDiff = 1.8e-1; |
|
} |
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, |
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean); |
|
} |
|
|
|
|
|
TEST_P(Test_Model, DetectionMobilenetSSD) |
|
{ |
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); |
|
ref = ref.reshape(1, ref.size[2]); |
|
|
|
std::string img_path = _tf("street.png"); |
|
Mat frame = imread(img_path); |
|
int frameWidth = frame.cols; |
|
int frameHeight = frame.rows; |
|
|
|
std::vector<int> refClassIds; |
|
std::vector<float> refConfidences; |
|
std::vector<Rect2d> refBoxes; |
|
for (int i = 0; i < ref.rows; i++) |
|
{ |
|
refClassIds.emplace_back(ref.at<float>(i, 1)); |
|
refConfidences.emplace_back(ref.at<float>(i, 2)); |
|
int left = ref.at<float>(i, 3) * frameWidth; |
|
int top = ref.at<float>(i, 4) * frameHeight; |
|
int right = ref.at<float>(i, 5) * frameWidth; |
|
int bottom = ref.at<float>(i, 6) * frameHeight; |
|
int width = right - left + 1; |
|
int height = bottom - top + 1; |
|
refBoxes.emplace_back(left, top, width, height); |
|
} |
|
|
|
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false); |
|
std::string config_file = _tf("MobileNetSSD_deploy.prototxt"); |
|
|
|
Scalar mean = Scalar(127.5, 127.5, 127.5); |
|
double scale = 1.0 / 127.5; |
|
Size size{300, 300}; |
|
|
|
double scoreDiff = 1e-5, iouDiff = 1e-5; |
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
scoreDiff = 1.7e-2; |
|
iouDiff = 6.91e-2; |
|
} |
|
else if (target == DNN_TARGET_MYRIAD) |
|
{ |
|
scoreDiff = 1.7e-2; |
|
if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
iouDiff = 6.91e-2; |
|
} |
|
else if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 0.002; |
|
iouDiff = 1e-2; |
|
} |
|
float confThreshold = FLT_MIN; |
|
double nmsThreshold = 0.0; |
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, |
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale); |
|
} |
|
|
|
TEST_P(Test_Model, Keypoints_pose) |
|
{ |
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
#ifdef HAVE_INF_ENGINE |
|
if (target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
Mat inp = imread(_tf("pose.png")); |
|
std::string weights = _tf("onnx/models/lightweight_pose_estimation_201912.onnx", false); |
|
float kpdata[] = { |
|
237.65625f, 78.25f, 237.65625f, 136.9375f, |
|
190.125f, 136.9375f, 142.59375f, 195.625f, 79.21875f, 176.0625f, 285.1875f, 117.375f, |
|
348.5625f, 195.625f, 396.09375f, 176.0625f, 205.96875f, 313.0f, 205.96875f, 430.375f, |
|
205.96875f, 528.1875f, 269.34375f, 293.4375f, 253.5f, 430.375f, 237.65625f, 528.1875f, |
|
221.8125f, 58.6875f, 253.5f, 58.6875f, 205.96875f, 78.25f, 253.5f, 58.6875f |
|
}; |
|
Mat exp(18, 2, CV_32FC1, kpdata); |
|
|
|
Size size{256, 256}; |
|
float norm = 1e-4; |
|
double scale = 1.0/255; |
|
Scalar mean = Scalar(128, 128, 128); |
|
bool swapRB = false; |
|
|
|
// Ref. Range: [58.6875, 508.625] |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
norm = 20; // l1 = 1.5, lInf = 20 |
|
|
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB); |
|
} |
|
|
|
TEST_P(Test_Model, Keypoints_face) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
Mat inp = imread(_tf("gray_face.png"), 0); |
|
std::string weights = _tf("onnx/models/facial_keypoints.onnx", false); |
|
Mat exp = blobFromNPY(_tf("facial_keypoints_exp.npy")); |
|
|
|
Size size{224, 224}; |
|
double scale = 1.0/255; |
|
Scalar mean = Scalar(); |
|
bool swapRB = false; |
|
|
|
// Ref. Range: [-1.1784188, 1.7758257] |
|
float norm = 1e-4; |
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
norm = 5e-3; |
|
if (target == DNN_TARGET_MYRIAD) |
|
{ |
|
// Myriad2: l1 = 0.0004, lInf = 0.002 |
|
// MyriadX: l1 = 0.003, lInf = 0.009 |
|
norm = 0.009; |
|
} |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
norm = 0.004; // l1 = 0.0006, lInf = 0.004 |
|
|
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB); |
|
} |
|
|
|
TEST_P(Test_Model, Detection_normalized) |
|
{ |
|
std::string img_path = _tf("grace_hopper_227.png"); |
|
std::vector<int> refClassIds = {15}; |
|
std::vector<float> refConfidences = {0.999222f}; |
|
std::vector<Rect2d> refBoxes = {Rect2d(0, 4, 227, 222)}; |
|
|
|
std::string weights_file = _tf("MobileNetSSD_deploy.caffemodel", false); |
|
std::string config_file = _tf("MobileNetSSD_deploy.prototxt"); |
|
|
|
Scalar mean = Scalar(127.5, 127.5, 127.5); |
|
double scale = 1.0 / 127.5; |
|
Size size{300, 300}; |
|
|
|
double scoreDiff = 1e-5, iouDiff = 1e-5; |
|
float confThreshold = FLT_MIN; |
|
double nmsThreshold = 0.0; |
|
if (target == DNN_TARGET_CUDA) |
|
{ |
|
scoreDiff = 3e-4; |
|
iouDiff = 0.018; |
|
} |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 5e-3; |
|
iouDiff = 0.09; |
|
} |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) |
|
{ |
|
iouDiff = 0.095f; |
|
} |
|
#endif |
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes, |
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale); |
|
} |
|
|
|
TEST_P(Test_Model, Segmentation) |
|
{ |
|
std::string inp = _tf("dog416.png"); |
|
std::string weights_file = _tf("fcn8s-heavy-pascal.prototxt"); |
|
std::string config_file = _tf("fcn8s-heavy-pascal.caffemodel", false); |
|
std::string exp = _tf("segmentation_exp.png"); |
|
|
|
Size size{128, 128}; |
|
float norm = 0; |
|
double scale = 1.0; |
|
Scalar mean = Scalar(); |
|
bool swapRB = false; |
|
|
|
testSegmentationModel(weights_file, config_file, inp, exp, norm, size, mean, scale, swapRB); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Model, dnnBackendsAndTargets()); |
|
|
|
}} // namespace
|
|
|