mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
663 lines
24 KiB
663 lines
24 KiB
// Copyright 2012 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Image transforms and color space conversion methods for lossless decoder. |
|
// |
|
// Authors: Vikas Arora (vikaas.arora@gmail.com) |
|
// Jyrki Alakuijala (jyrki@google.com) |
|
// Urvang Joshi (urvang@google.com) |
|
|
|
#include "./dsp.h" |
|
|
|
#include <math.h> |
|
#include <stdlib.h> |
|
#include "../dec/vp8li_dec.h" |
|
#include "../utils/endian_inl_utils.h" |
|
#include "./lossless.h" |
|
#include "./lossless_common.h" |
|
|
|
#define MAX_DIFF_COST (1e30f) |
|
|
|
//------------------------------------------------------------------------------ |
|
// Image transforms. |
|
|
|
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
|
return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
|
return Average2(Average2(a0, a2), a1); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
|
uint32_t a2, uint32_t a3) { |
|
return Average2(Average2(a0, a1), Average2(a2, a3)); |
|
} |
|
|
|
static WEBP_INLINE uint32_t Clip255(uint32_t a) { |
|
if (a < 256) { |
|
return a; |
|
} |
|
// return 0, when a is a negative integer. |
|
// return 255, when a is positive. |
|
return ~a >> 24; |
|
} |
|
|
|
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { |
|
return Clip255(a + b - c); |
|
} |
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
|
uint32_t c2) { |
|
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); |
|
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, |
|
(c1 >> 16) & 0xff, |
|
(c2 >> 16) & 0xff); |
|
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, |
|
(c1 >> 8) & 0xff, |
|
(c2 >> 8) & 0xff); |
|
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); |
|
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
|
} |
|
|
|
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { |
|
return Clip255(a + (a - b) / 2); |
|
} |
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
|
uint32_t c2) { |
|
const uint32_t ave = Average2(c0, c1); |
|
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); |
|
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); |
|
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); |
|
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); |
|
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
|
} |
|
|
|
// gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined. |
|
#if defined(__arm__) && LOCAL_GCC_VERSION == 0x409 |
|
# define LOCAL_INLINE __attribute__ ((noinline)) |
|
#else |
|
# define LOCAL_INLINE WEBP_INLINE |
|
#endif |
|
|
|
static LOCAL_INLINE int Sub3(int a, int b, int c) { |
|
const int pb = b - c; |
|
const int pa = a - c; |
|
return abs(pb) - abs(pa); |
|
} |
|
|
|
#undef LOCAL_INLINE |
|
|
|
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
|
const int pa_minus_pb = |
|
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + |
|
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + |
|
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + |
|
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); |
|
return (pa_minus_pb <= 0) ? a : b; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Predictors |
|
|
|
static uint32_t Predictor0(uint32_t left, const uint32_t* const top) { |
|
(void)top; |
|
(void)left; |
|
return ARGB_BLACK; |
|
} |
|
static uint32_t Predictor1(uint32_t left, const uint32_t* const top) { |
|
(void)top; |
|
return left; |
|
} |
|
static uint32_t Predictor2(uint32_t left, const uint32_t* const top) { |
|
(void)left; |
|
return top[0]; |
|
} |
|
static uint32_t Predictor3(uint32_t left, const uint32_t* const top) { |
|
(void)left; |
|
return top[1]; |
|
} |
|
static uint32_t Predictor4(uint32_t left, const uint32_t* const top) { |
|
(void)left; |
|
return top[-1]; |
|
} |
|
static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average3(left, top[0], top[1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(left, top[-1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(left, top[0]); |
|
return pred; |
|
} |
|
static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(top[-1], top[0]); |
|
(void)left; |
|
return pred; |
|
} |
|
static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average2(top[0], top[1]); |
|
(void)left; |
|
return pred; |
|
} |
|
static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Average4(left, top[-1], top[0], top[1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = Select(top[0], left, top[-1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
|
return pred; |
|
} |
|
static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { |
|
const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
|
return pred; |
|
} |
|
|
|
GENERATE_PREDICTOR_ADD(Predictor0, PredictorAdd0) |
|
static void PredictorAdd1(const uint32_t* in, const uint32_t* upper, |
|
int num_pixels, uint32_t* out) { |
|
int i; |
|
uint32_t left = out[-1]; |
|
for (i = 0; i < num_pixels; ++i) { |
|
out[i] = left = VP8LAddPixels(in[i], left); |
|
} |
|
(void)upper; |
|
} |
|
GENERATE_PREDICTOR_ADD(Predictor2, PredictorAdd2) |
|
GENERATE_PREDICTOR_ADD(Predictor3, PredictorAdd3) |
|
GENERATE_PREDICTOR_ADD(Predictor4, PredictorAdd4) |
|
GENERATE_PREDICTOR_ADD(Predictor5, PredictorAdd5) |
|
GENERATE_PREDICTOR_ADD(Predictor6, PredictorAdd6) |
|
GENERATE_PREDICTOR_ADD(Predictor7, PredictorAdd7) |
|
GENERATE_PREDICTOR_ADD(Predictor8, PredictorAdd8) |
|
GENERATE_PREDICTOR_ADD(Predictor9, PredictorAdd9) |
|
GENERATE_PREDICTOR_ADD(Predictor10, PredictorAdd10) |
|
GENERATE_PREDICTOR_ADD(Predictor11, PredictorAdd11) |
|
GENERATE_PREDICTOR_ADD(Predictor12, PredictorAdd12) |
|
GENERATE_PREDICTOR_ADD(Predictor13, PredictorAdd13) |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
// Inverse prediction. |
|
static void PredictorInverseTransform(const VP8LTransform* const transform, |
|
int y_start, int y_end, |
|
const uint32_t* in, uint32_t* out) { |
|
const int width = transform->xsize_; |
|
if (y_start == 0) { // First Row follows the L (mode=1) mode. |
|
PredictorAdd0(in, NULL, 1, out); |
|
PredictorAdd1(in + 1, NULL, width - 1, out + 1); |
|
in += width; |
|
out += width; |
|
++y_start; |
|
} |
|
|
|
{ |
|
int y = y_start; |
|
const int tile_width = 1 << transform->bits_; |
|
const int mask = tile_width - 1; |
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
|
const uint32_t* pred_mode_base = |
|
transform->data_ + (y >> transform->bits_) * tiles_per_row; |
|
|
|
while (y < y_end) { |
|
const uint32_t* pred_mode_src = pred_mode_base; |
|
int x = 1; |
|
// First pixel follows the T (mode=2) mode. |
|
PredictorAdd2(in, out - width, 1, out); |
|
// .. the rest: |
|
while (x < width) { |
|
const VP8LPredictorAddSubFunc pred_func = |
|
VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; |
|
int x_end = (x & ~mask) + tile_width; |
|
if (x_end > width) x_end = width; |
|
pred_func(in + x, out + x - width, x_end - x, out + x); |
|
x = x_end; |
|
} |
|
in += width; |
|
out += width; |
|
++y; |
|
if ((y & mask) == 0) { // Use the same mask, since tiles are squares. |
|
pred_mode_base += tiles_per_row; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Add green to blue and red channels (i.e. perform the inverse transform of |
|
// 'subtract green'). |
|
void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, |
|
uint32_t* dst) { |
|
int i; |
|
for (i = 0; i < num_pixels; ++i) { |
|
const uint32_t argb = src[i]; |
|
const uint32_t green = ((argb >> 8) & 0xff); |
|
uint32_t red_blue = (argb & 0x00ff00ffu); |
|
red_blue += (green << 16) | green; |
|
red_blue &= 0x00ff00ffu; |
|
dst[i] = (argb & 0xff00ff00u) | red_blue; |
|
} |
|
} |
|
|
|
static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, |
|
int8_t color) { |
|
return ((int)color_pred * color) >> 5; |
|
} |
|
|
|
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
|
VP8LMultipliers* const m) { |
|
m->green_to_red_ = (color_code >> 0) & 0xff; |
|
m->green_to_blue_ = (color_code >> 8) & 0xff; |
|
m->red_to_blue_ = (color_code >> 16) & 0xff; |
|
} |
|
|
|
void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, |
|
const uint32_t* src, int num_pixels, |
|
uint32_t* dst) { |
|
int i; |
|
for (i = 0; i < num_pixels; ++i) { |
|
const uint32_t argb = src[i]; |
|
const uint32_t green = argb >> 8; |
|
const uint32_t red = argb >> 16; |
|
int new_red = red; |
|
int new_blue = argb; |
|
new_red += ColorTransformDelta(m->green_to_red_, green); |
|
new_red &= 0xff; |
|
new_blue += ColorTransformDelta(m->green_to_blue_, green); |
|
new_blue += ColorTransformDelta(m->red_to_blue_, new_red); |
|
new_blue &= 0xff; |
|
dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
|
} |
|
} |
|
|
|
// Color space inverse transform. |
|
static void ColorSpaceInverseTransform(const VP8LTransform* const transform, |
|
int y_start, int y_end, |
|
const uint32_t* src, uint32_t* dst) { |
|
const int width = transform->xsize_; |
|
const int tile_width = 1 << transform->bits_; |
|
const int mask = tile_width - 1; |
|
const int safe_width = width & ~mask; |
|
const int remaining_width = width - safe_width; |
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
|
int y = y_start; |
|
const uint32_t* pred_row = |
|
transform->data_ + (y >> transform->bits_) * tiles_per_row; |
|
|
|
while (y < y_end) { |
|
const uint32_t* pred = pred_row; |
|
VP8LMultipliers m = { 0, 0, 0 }; |
|
const uint32_t* const src_safe_end = src + safe_width; |
|
const uint32_t* const src_end = src + width; |
|
while (src < src_safe_end) { |
|
ColorCodeToMultipliers(*pred++, &m); |
|
VP8LTransformColorInverse(&m, src, tile_width, dst); |
|
src += tile_width; |
|
dst += tile_width; |
|
} |
|
if (src < src_end) { // Left-overs using C-version. |
|
ColorCodeToMultipliers(*pred++, &m); |
|
VP8LTransformColorInverse(&m, src, remaining_width, dst); |
|
src += remaining_width; |
|
dst += remaining_width; |
|
} |
|
++y; |
|
if ((y & mask) == 0) pred_row += tiles_per_row; |
|
} |
|
} |
|
|
|
// Separate out pixels packed together using pixel-bundling. |
|
// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). |
|
#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ |
|
GET_INDEX, GET_VALUE) \ |
|
static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ |
|
TYPE* dst, int y_start, int y_end, int width) { \ |
|
int y; \ |
|
for (y = y_start; y < y_end; ++y) { \ |
|
int x; \ |
|
for (x = 0; x < width; ++x) { \ |
|
*dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ |
|
} \ |
|
} \ |
|
} \ |
|
STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ |
|
int y_start, int y_end, const TYPE* src, \ |
|
TYPE* dst) { \ |
|
int y; \ |
|
const int bits_per_pixel = 8 >> transform->bits_; \ |
|
const int width = transform->xsize_; \ |
|
const uint32_t* const color_map = transform->data_; \ |
|
if (bits_per_pixel < 8) { \ |
|
const int pixels_per_byte = 1 << transform->bits_; \ |
|
const int count_mask = pixels_per_byte - 1; \ |
|
const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ |
|
for (y = y_start; y < y_end; ++y) { \ |
|
uint32_t packed_pixels = 0; \ |
|
int x; \ |
|
for (x = 0; x < width; ++x) { \ |
|
/* We need to load fresh 'packed_pixels' once every */ \ |
|
/* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ |
|
/* is a power of 2, so can just use a mask for that, instead of */ \ |
|
/* decrementing a counter. */ \ |
|
if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ |
|
*dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ |
|
packed_pixels >>= bits_per_pixel; \ |
|
} \ |
|
} \ |
|
} else { \ |
|
VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ |
|
} \ |
|
} |
|
|
|
COLOR_INDEX_INVERSE(ColorIndexInverseTransform, MapARGB, static, uint32_t, 32b, |
|
VP8GetARGBIndex, VP8GetARGBValue) |
|
COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha, , uint8_t, |
|
8b, VP8GetAlphaIndex, VP8GetAlphaValue) |
|
|
|
#undef COLOR_INDEX_INVERSE |
|
|
|
void VP8LInverseTransform(const VP8LTransform* const transform, |
|
int row_start, int row_end, |
|
const uint32_t* const in, uint32_t* const out) { |
|
const int width = transform->xsize_; |
|
assert(row_start < row_end); |
|
assert(row_end <= transform->ysize_); |
|
switch (transform->type_) { |
|
case SUBTRACT_GREEN: |
|
VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); |
|
break; |
|
case PREDICTOR_TRANSFORM: |
|
PredictorInverseTransform(transform, row_start, row_end, in, out); |
|
if (row_end != transform->ysize_) { |
|
// The last predicted row in this iteration will be the top-pred row |
|
// for the first row in next iteration. |
|
memcpy(out - width, out + (row_end - row_start - 1) * width, |
|
width * sizeof(*out)); |
|
} |
|
break; |
|
case CROSS_COLOR_TRANSFORM: |
|
ColorSpaceInverseTransform(transform, row_start, row_end, in, out); |
|
break; |
|
case COLOR_INDEXING_TRANSFORM: |
|
if (in == out && transform->bits_ > 0) { |
|
// Move packed pixels to the end of unpacked region, so that unpacking |
|
// can occur seamlessly. |
|
// Also, note that this is the only transform that applies on |
|
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other |
|
// transforms work on effective width of xsize_. |
|
const int out_stride = (row_end - row_start) * width; |
|
const int in_stride = (row_end - row_start) * |
|
VP8LSubSampleSize(transform->xsize_, transform->bits_); |
|
uint32_t* const src = out + out_stride - in_stride; |
|
memmove(src, out, in_stride * sizeof(*src)); |
|
ColorIndexInverseTransform(transform, row_start, row_end, src, out); |
|
} else { |
|
ColorIndexInverseTransform(transform, row_start, row_end, in, out); |
|
} |
|
break; |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Color space conversion. |
|
|
|
static int is_big_endian(void) { |
|
static const union { |
|
uint16_t w; |
|
uint8_t b[2]; |
|
} tmp = { 1 }; |
|
return (tmp.b[0] != 1); |
|
} |
|
|
|
void VP8LConvertBGRAToRGB_C(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
*dst++ = (argb >> 16) & 0xff; |
|
*dst++ = (argb >> 8) & 0xff; |
|
*dst++ = (argb >> 0) & 0xff; |
|
} |
|
} |
|
|
|
void VP8LConvertBGRAToRGBA_C(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
*dst++ = (argb >> 16) & 0xff; |
|
*dst++ = (argb >> 8) & 0xff; |
|
*dst++ = (argb >> 0) & 0xff; |
|
*dst++ = (argb >> 24) & 0xff; |
|
} |
|
} |
|
|
|
void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
|
const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
|
#ifdef WEBP_SWAP_16BIT_CSP |
|
*dst++ = ba; |
|
*dst++ = rg; |
|
#else |
|
*dst++ = rg; |
|
*dst++ = ba; |
|
#endif |
|
} |
|
} |
|
|
|
void VP8LConvertBGRAToRGB565_C(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
|
const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
|
#ifdef WEBP_SWAP_16BIT_CSP |
|
*dst++ = gb; |
|
*dst++ = rg; |
|
#else |
|
*dst++ = rg; |
|
*dst++ = gb; |
|
#endif |
|
} |
|
} |
|
|
|
void VP8LConvertBGRAToBGR_C(const uint32_t* src, |
|
int num_pixels, uint8_t* dst) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
*dst++ = (argb >> 0) & 0xff; |
|
*dst++ = (argb >> 8) & 0xff; |
|
*dst++ = (argb >> 16) & 0xff; |
|
} |
|
} |
|
|
|
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
|
int swap_on_big_endian) { |
|
if (is_big_endian() == swap_on_big_endian) { |
|
const uint32_t* const src_end = src + num_pixels; |
|
while (src < src_end) { |
|
const uint32_t argb = *src++; |
|
|
|
#if !defined(WORDS_BIGENDIAN) |
|
#if !defined(WEBP_REFERENCE_IMPLEMENTATION) |
|
WebPUint32ToMem(dst, BSwap32(argb)); |
|
#else // WEBP_REFERENCE_IMPLEMENTATION |
|
dst[0] = (argb >> 24) & 0xff; |
|
dst[1] = (argb >> 16) & 0xff; |
|
dst[2] = (argb >> 8) & 0xff; |
|
dst[3] = (argb >> 0) & 0xff; |
|
#endif |
|
#else // WORDS_BIGENDIAN |
|
dst[0] = (argb >> 0) & 0xff; |
|
dst[1] = (argb >> 8) & 0xff; |
|
dst[2] = (argb >> 16) & 0xff; |
|
dst[3] = (argb >> 24) & 0xff; |
|
#endif |
|
dst += sizeof(argb); |
|
} |
|
} else { |
|
memcpy(dst, src, num_pixels * sizeof(*src)); |
|
} |
|
} |
|
|
|
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, |
|
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { |
|
switch (out_colorspace) { |
|
case MODE_RGB: |
|
VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_RGBA: |
|
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_rgbA: |
|
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
|
break; |
|
case MODE_BGR: |
|
VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_BGRA: |
|
CopyOrSwap(in_data, num_pixels, rgba, 1); |
|
break; |
|
case MODE_bgrA: |
|
CopyOrSwap(in_data, num_pixels, rgba, 1); |
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
|
break; |
|
case MODE_ARGB: |
|
CopyOrSwap(in_data, num_pixels, rgba, 0); |
|
break; |
|
case MODE_Argb: |
|
CopyOrSwap(in_data, num_pixels, rgba, 0); |
|
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); |
|
break; |
|
case MODE_RGBA_4444: |
|
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
|
break; |
|
case MODE_rgbA_4444: |
|
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
|
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); |
|
break; |
|
case MODE_RGB_565: |
|
VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); |
|
break; |
|
default: |
|
assert(0); // Code flow should not reach here. |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; |
|
VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; |
|
VP8LPredictorFunc VP8LPredictors[16]; |
|
|
|
// exposed plain-C implementations |
|
VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; |
|
VP8LPredictorFunc VP8LPredictors_C[16]; |
|
|
|
VP8LTransformColorInverseFunc VP8LTransformColorInverse; |
|
|
|
VP8LConvertFunc VP8LConvertBGRAToRGB; |
|
VP8LConvertFunc VP8LConvertBGRAToRGBA; |
|
VP8LConvertFunc VP8LConvertBGRAToRGBA4444; |
|
VP8LConvertFunc VP8LConvertBGRAToRGB565; |
|
VP8LConvertFunc VP8LConvertBGRAToBGR; |
|
|
|
VP8LMapARGBFunc VP8LMapColor32b; |
|
VP8LMapAlphaFunc VP8LMapColor8b; |
|
|
|
extern void VP8LDspInitSSE2(void); |
|
extern void VP8LDspInitNEON(void); |
|
extern void VP8LDspInitMIPSdspR2(void); |
|
extern void VP8LDspInitMSA(void); |
|
|
|
static volatile VP8CPUInfo lossless_last_cpuinfo_used = |
|
(VP8CPUInfo)&lossless_last_cpuinfo_used; |
|
|
|
#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ |
|
(OUT)[0] = IN##0; \ |
|
(OUT)[1] = IN##1; \ |
|
(OUT)[2] = IN##2; \ |
|
(OUT)[3] = IN##3; \ |
|
(OUT)[4] = IN##4; \ |
|
(OUT)[5] = IN##5; \ |
|
(OUT)[6] = IN##6; \ |
|
(OUT)[7] = IN##7; \ |
|
(OUT)[8] = IN##8; \ |
|
(OUT)[9] = IN##9; \ |
|
(OUT)[10] = IN##10; \ |
|
(OUT)[11] = IN##11; \ |
|
(OUT)[12] = IN##12; \ |
|
(OUT)[13] = IN##13; \ |
|
(OUT)[14] = IN##0; /* <- padding security sentinels*/ \ |
|
(OUT)[15] = IN##0; \ |
|
} while (0); |
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) { |
|
if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return; |
|
|
|
COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors) |
|
COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C) |
|
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) |
|
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) |
|
|
|
VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; |
|
|
|
VP8LTransformColorInverse = VP8LTransformColorInverse_C; |
|
|
|
VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; |
|
VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; |
|
VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; |
|
VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; |
|
VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; |
|
|
|
VP8LMapColor32b = MapARGB; |
|
VP8LMapColor8b = MapAlpha; |
|
|
|
// If defined, use CPUInfo() to overwrite some pointers with faster versions. |
|
if (VP8GetCPUInfo != NULL) { |
|
#if defined(WEBP_USE_SSE2) |
|
if (VP8GetCPUInfo(kSSE2)) { |
|
VP8LDspInitSSE2(); |
|
} |
|
#endif |
|
#if defined(WEBP_USE_NEON) |
|
if (VP8GetCPUInfo(kNEON)) { |
|
VP8LDspInitNEON(); |
|
} |
|
#endif |
|
#if defined(WEBP_USE_MIPS_DSP_R2) |
|
if (VP8GetCPUInfo(kMIPSdspR2)) { |
|
VP8LDspInitMIPSdspR2(); |
|
} |
|
#endif |
|
#if defined(WEBP_USE_MSA) |
|
if (VP8GetCPUInfo(kMSA)) { |
|
VP8LDspInitMSA(); |
|
} |
|
#endif |
|
} |
|
lossless_last_cpuinfo_used = VP8GetCPUInfo; |
|
} |
|
#undef COPY_PREDICTOR_ARRAY |
|
|
|
//------------------------------------------------------------------------------
|
|
|