mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
4.6 KiB
150 lines
4.6 KiB
import numpy as np |
|
import cv2 |
|
from time import clock |
|
from numpy import pi, sin, cos |
|
import common |
|
|
|
class VideoSynthBase(object): |
|
def __init__(self, size=None, noise=0.0, bg = None, **params): |
|
self.bg = None |
|
self.frame_size = (640, 480) |
|
if bg is not None: |
|
self.bg = cv2.imread(bg, 1) |
|
h, w = self.bg.shape[:2] |
|
self.frame_size = (w, h) |
|
|
|
if size is not None: |
|
w, h = map(int, size.split('x')) |
|
self.frame_size = (w, h) |
|
self.bg = cv2.resize(self.bg, self.frame_size) |
|
|
|
self.noise = float(noise) |
|
|
|
def render(self, dst): |
|
pass |
|
|
|
def read(self, dst=None): |
|
w, h = self.frame_size |
|
|
|
if self.bg is None: |
|
buf = np.zeros((h, w, 3), np.uint8) |
|
else: |
|
buf = self.bg.copy() |
|
|
|
self.render(buf) |
|
|
|
if self.noise > 0.0: |
|
noise = np.zeros((h, w, 3), np.int8) |
|
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise) |
|
buf = cv2.add(buf, noise, dtype=cv2.CV_8UC3) |
|
return True, buf |
|
|
|
class Chess(VideoSynthBase): |
|
def __init__(self, **kw): |
|
super(Chess, self).__init__(**kw) |
|
|
|
w, h = self.frame_size |
|
|
|
self.grid_size = sx, sy = 10, 7 |
|
white_quads = [] |
|
black_quads = [] |
|
for i, j in np.ndindex(sy, sx): |
|
q = [[j, i, 0], [j+1, i, 0], [j+1, i+1, 0], [j, i+1, 0]] |
|
[white_quads, black_quads][(i + j) % 2].append(q) |
|
self.white_quads = np.float32(white_quads) |
|
self.black_quads = np.float32(black_quads) |
|
|
|
fx = 0.9 |
|
self.K = np.float64([[fx*w, 0, 0.5*(w-1)], |
|
[0, fx*w, 0.5*(h-1)], |
|
[0.0,0.0, 1.0]]) |
|
|
|
self.dist_coef = np.float64([-0.2, 0.1, 0, 0]) |
|
self.t = 0 |
|
|
|
def draw_quads(self, img, quads, color = (0, 255, 0)): |
|
img_quads = cv2.projectPoints(quads.reshape(-1, 3), self.rvec, self.tvec, self.K, self.dist_coef) [0] |
|
img_quads.shape = quads.shape[:2] + (2,) |
|
for q in img_quads: |
|
cv2.fillConvexPoly(img, np.int32(q*4), color, cv2.CV_AA, shift=2) |
|
|
|
def render(self, dst): |
|
t = self.t |
|
self.t += 1.0/30.0 |
|
|
|
sx, sy = self.grid_size |
|
center = np.array([0.5*sx, 0.5*sy, 0.0]) |
|
phi = pi/3 + sin(t*3)*pi/8 |
|
c, s = cos(phi), sin(phi) |
|
ofs = np.array([sin(1.2*t), cos(1.8*t), 0]) * sx * 0.2 |
|
eye_pos = center + np.array([cos(t)*c, sin(t)*c, s]) * 15.0 + ofs |
|
target_pos = center + ofs |
|
|
|
R, self.tvec = common.lookat(eye_pos, target_pos) |
|
self.rvec = common.mtx2rvec(R) |
|
|
|
self.draw_quads(dst, self.white_quads, (245, 245, 245)) |
|
self.draw_quads(dst, self.black_quads, (10, 10, 10)) |
|
|
|
|
|
|
|
classes = dict(chess=Chess) |
|
|
|
def create_capture(source): |
|
''' |
|
source: <int> or '<int>' or '<filename>' or 'synth:<params>' |
|
''' |
|
try: source = int(source) |
|
except ValueError: pass |
|
else: |
|
return cv2.VideoCapture(source) |
|
source = str(source).strip() |
|
if source.startswith('synth'): |
|
ss = filter(None, source.split(':')) |
|
params = dict( s.split('=') for s in ss[1:] ) |
|
try: Class = classes[params['class']] |
|
except: Class = VideoSynthBase |
|
|
|
return Class(**params) |
|
return cv2.VideoCapture(source) |
|
|
|
|
|
presets = dict( |
|
empty = 'synth:', |
|
lena = 'synth:bg=../cpp/lena.jpg:noise=0.1', |
|
chess = 'synth:class=chess:bg=../cpp/lena.jpg:noise=0.1:size=640x480' |
|
) |
|
|
|
if __name__ == '__main__': |
|
import sys |
|
import getopt |
|
|
|
print 'USAGE: video.py [--shotdir <dir>] [source0] [source1] ...' |
|
print "source: '<int>' or '<filename>' or 'synth:<params>'" |
|
print |
|
|
|
args, sources = getopt.getopt(sys.argv[1:], '', 'shotdir=') |
|
args = dict(args) |
|
shotdir = args.get('--shotdir', '.') |
|
if len(sources) == 0: |
|
sources = [ presets['chess'] ] |
|
|
|
print 'Press SPACE to save current frame' |
|
|
|
caps = map(create_capture, sources) |
|
shot_idx = 0 |
|
while True: |
|
imgs = [] |
|
for i, cap in enumerate(caps): |
|
ret, img = cap.read() |
|
imgs.append(img) |
|
cv2.imshow('capture %d' % i, img) |
|
ch = cv2.waitKey(1) |
|
if ch == 27: |
|
break |
|
if ch == ord(' '): |
|
for i, img in enumerate(imgs): |
|
fn = '%s/shot_%d_%03d.bmp' % (shotdir, i, shot_idx) |
|
cv2.imwrite(fn, img) |
|
print fn, 'saved' |
|
shot_idx += 1
|
|
|