Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1046 lines
38 KiB
1046 lines
38 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other GpuMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or bpied warranties, including, but not limited to, the bpied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
using namespace std; |
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::transpose(const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); } |
|
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); } |
|
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; } |
|
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; } |
|
void cv::gpu::flip(const GpuMat&, GpuMat&, int) { throw_nogpu(); } |
|
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); } |
|
void cv::gpu::minMax(const GpuMat&, double*, double*) { throw_nogpu(); } |
|
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::exp(const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::log(const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::magnitude(const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::magnitudeSqr(const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); } |
|
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); } |
|
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); } |
|
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); } |
|
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat&) { throw_nogpu(); return GpuMat(); } |
|
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); } |
|
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); } |
|
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
#define NPP_VERSION (10 * NPP_VERSION_MAJOR + NPP_VERSION_MINOR) |
|
|
|
#if (defined(_WIN32) || defined(_WIN64)) && (NPP_VERSION >= 32) |
|
# define NPP_HAVE_COMPLEX_TYPE |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// add subtract multiply divide |
|
|
|
namespace |
|
{ |
|
typedef NppStatus (*npp_arithm_8u_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep, |
|
NppiSize oSizeROI, int nScaleFactor); |
|
typedef NppStatus (*npp_arithm_32s_t)(const Npp32s* pSrc1, int nSrc1Step, const Npp32s* pSrc2, int nSrc2Step, Npp32s* pDst, |
|
int nDstStep, NppiSize oSizeROI); |
|
typedef NppStatus (*npp_arithm_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst, |
|
int nDstStep, NppiSize oSizeROI); |
|
|
|
void nppArithmCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, |
|
npp_arithm_8u_t npp_func_8uc1, npp_arithm_8u_t npp_func_8uc4, |
|
npp_arithm_32s_t npp_func_32sc1, npp_arithm_32f_t npp_func_32fc1) |
|
{ |
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
|
|
#if NPP_VERSION >= 32 |
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1); |
|
#else |
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32FC1); |
|
#endif |
|
|
|
dst.create( src1.size(), src1.type() ); |
|
|
|
NppiSize sz; |
|
sz.width = src1.cols; |
|
sz.height = src1.rows; |
|
|
|
switch (src1.type()) |
|
{ |
|
case CV_8UC1: |
|
nppSafeCall( npp_func_8uc1(src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
dst.ptr<Npp8u>(), dst.step, sz, 0) ); |
|
break; |
|
case CV_8UC4: |
|
nppSafeCall( npp_func_8uc4(src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
dst.ptr<Npp8u>(), dst.step, sz, 0) ); |
|
break; |
|
#if NPP_VERSION >= 32 |
|
case CV_32SC1: |
|
nppSafeCall( npp_func_32sc1(src1.ptr<Npp32s>(), src1.step, |
|
src2.ptr<Npp32s>(), src2.step, |
|
dst.ptr<Npp32s>(), dst.step, sz) ); |
|
break; |
|
#endif |
|
case CV_32FC1: |
|
nppSafeCall( npp_func_32fc1(src1.ptr<Npp32f>(), src1.step, |
|
src2.ptr<Npp32f>(), src2.step, |
|
dst.ptr<Npp32f>(), dst.step, sz) ); |
|
break; |
|
default: |
|
CV_Assert(!"Unsupported source type"); |
|
} |
|
} |
|
|
|
template<int SCN> struct NppArithmScalarFunc; |
|
template<> struct NppArithmScalarFunc<1> |
|
{ |
|
typedef NppStatus (*func_ptr)(const Npp32f *pSrc, int nSrcStep, Npp32f nValue, Npp32f *pDst, |
|
int nDstStep, NppiSize oSizeROI); |
|
}; |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
template<> struct NppArithmScalarFunc<2> |
|
{ |
|
typedef NppStatus (*func_ptr)(const Npp32fc *pSrc, int nSrcStep, Npp32fc nValue, Npp32fc *pDst, |
|
int nDstStep, NppiSize oSizeROI); |
|
}; |
|
#endif |
|
|
|
template<int SCN, typename NppArithmScalarFunc<SCN>::func_ptr func> struct NppArithmScalar; |
|
template<typename NppArithmScalarFunc<1>::func_ptr func> struct NppArithmScalar<1, func> |
|
{ |
|
static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<Npp32f>(), src.step, (Npp32f)sc[0], dst.ptr<Npp32f>(), dst.step, sz) ); |
|
} |
|
}; |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
template<typename NppArithmScalarFunc<2>::func_ptr func> struct NppArithmScalar<2, func> |
|
{ |
|
static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Npp32fc nValue; |
|
nValue.re = (Npp32f)sc[0]; |
|
nValue.im = (Npp32f)sc[1]; |
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, nValue, dst.ptr<Npp32fc>(), dst.step, sz) ); |
|
} |
|
}; |
|
#endif |
|
} |
|
|
|
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32s_C1R, nppiAdd_32f_C1R); |
|
#else |
|
nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, 0, nppiAdd_32f_C1R); |
|
#endif |
|
} |
|
|
|
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32s_C1R, nppiSub_32f_C1R); |
|
#else |
|
nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, 0, nppiSub_32f_C1R); |
|
#endif |
|
} |
|
|
|
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32s_C1R, nppiMul_32f_C1R); |
|
#else |
|
nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, 0, nppiMul_32f_C1R); |
|
#endif |
|
} |
|
|
|
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32s_C1R, nppiDiv_32f_C1R); |
|
#else |
|
nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, 0, nppiDiv_32f_C1R); |
|
#endif |
|
} |
|
|
|
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst) |
|
{ |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst); |
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiAddC_32f_C1R>::calc, NppArithmScalar<2, nppiAddC_32fc_C1R>::calc}; |
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2); |
|
|
|
callers[src.channels()](src, sc, dst); |
|
#else |
|
# if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
NppArithmScalar<1, nppiAddC_32f_C1R>::calc(src, sc, dst); |
|
# else |
|
CV_Assert(!"This function doesn't supported"); |
|
# endif |
|
#endif |
|
} |
|
|
|
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst) |
|
{ |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst); |
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiSubC_32f_C1R>::calc, NppArithmScalar<2, nppiSubC_32fc_C1R>::calc}; |
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2); |
|
|
|
callers[src.channels()](src, sc, dst); |
|
#else |
|
# if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
NppArithmScalar<1, nppiSubC_32f_C1R>::calc(src, sc, dst); |
|
# else |
|
CV_Assert(!"This function doesn't supported"); |
|
# endif |
|
#endif |
|
} |
|
|
|
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst) |
|
{ |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst); |
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiMulC_32f_C1R>::calc, NppArithmScalar<2, nppiMulC_32fc_C1R>::calc}; |
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2); |
|
|
|
callers[src.channels()](src, sc, dst); |
|
#else |
|
# if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
NppArithmScalar<1, nppiMulC_32f_C1R>::calc(src, sc, dst); |
|
# else |
|
CV_Assert(!"This function doesn't supported"); |
|
# endif |
|
#endif |
|
} |
|
|
|
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst) |
|
{ |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst); |
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiDivC_32f_C1R>::calc, NppArithmScalar<2, nppiDivC_32fc_C1R>::calc}; |
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2); |
|
|
|
callers[src.channels()](src, sc, dst); |
|
#else |
|
# if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
NppArithmScalar<1, nppiDivC_32f_C1R>::calc(src, sc, dst); |
|
# else |
|
CV_Assert(!"This function doesn't supported"); |
|
# endif |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// transpose |
|
|
|
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
dst.create( src.cols, src.rows, src.type() ); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz) ); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// absdiff |
|
|
|
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst) |
|
{ |
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
|
|
#if NPP_VERSION >= 32 |
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1); |
|
#else |
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32FC1); |
|
#endif |
|
|
|
dst.create( src1.size(), src1.type() ); |
|
|
|
NppiSize sz; |
|
sz.width = src1.cols; |
|
sz.height = src1.rows; |
|
|
|
switch (src1.type()) |
|
{ |
|
case CV_8UC1: |
|
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
dst.ptr<Npp8u>(), dst.step, sz) ); |
|
break; |
|
case CV_8UC4: |
|
nppSafeCall( nppiAbsDiff_8u_C4R(src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
dst.ptr<Npp8u>(), dst.step, sz) ); |
|
break; |
|
#if NPP_VERSION >= 32 |
|
case CV_32SC1: |
|
nppSafeCall( nppiAbsDiff_32s_C1R(src1.ptr<Npp32s>(), src1.step, |
|
src2.ptr<Npp32s>(), src2.step, |
|
dst.ptr<Npp32s>(), dst.step, sz) ); |
|
break; |
|
#endif |
|
case CV_32FC1: |
|
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), src1.step, |
|
src2.ptr<Npp32f>(), src2.step, |
|
dst.ptr<Npp32f>(), dst.step, sz) ); |
|
break; |
|
default: |
|
CV_Assert(!"Unsupported source type"); |
|
} |
|
} |
|
|
|
void cv::gpu::absdiff(const GpuMat& src, const Scalar& s, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
|
|
dst.create( src.size(), src.type() ); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiAbsDiffC_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz, (Npp32f)s[0]) ); |
|
#else |
|
CV_Assert(!"This function doesn't supported"); |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// compare |
|
|
|
namespace cv { namespace gpu { namespace mathfunc |
|
{ |
|
void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst); |
|
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst); |
|
}}} |
|
|
|
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop) |
|
{ |
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
|
|
CV_Assert(src1.type() == CV_8UC4 || src1.type() == CV_32FC1); |
|
|
|
dst.create( src1.size(), CV_8UC1 ); |
|
|
|
static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ }; |
|
|
|
NppiSize sz; |
|
sz.width = src1.cols; |
|
sz.height = src1.rows; |
|
|
|
if (src1.type() == CV_8UC4) |
|
{ |
|
if (cmpop != CMP_NE) |
|
{ |
|
nppSafeCall( nppiCompare_8u_C4R(src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) ); |
|
} |
|
else |
|
{ |
|
mathfunc::compare_ne_8uc4(src1, src2, dst); |
|
} |
|
} |
|
else |
|
{ |
|
if (cmpop != CMP_NE) |
|
{ |
|
nppSafeCall( nppiCompare_32f_C1R(src1.ptr<Npp32f>(), src1.step, |
|
src2.ptr<Npp32f>(), src2.step, |
|
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) ); |
|
} |
|
else |
|
{ |
|
mathfunc::compare_ne_32f(src1, src2, dst); |
|
} |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// meanStdDev |
|
|
|
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), src.step, sz, mean.val, stddev.val) ); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// norm |
|
|
|
double cv::gpu::norm(const GpuMat& src1, int normType) |
|
{ |
|
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType); |
|
} |
|
|
|
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) |
|
{ |
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
|
|
CV_Assert(src1.type() == CV_8UC1); |
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); |
|
|
|
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, |
|
NppiSize oSizeROI, Npp64f* pRetVal); |
|
|
|
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; |
|
|
|
NppiSize sz; |
|
sz.width = src1.cols; |
|
sz.height = src1.rows; |
|
|
|
int funcIdx = normType >> 1; |
|
double retVal; |
|
|
|
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
sz, &retVal) ); |
|
|
|
return retVal; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// flip |
|
|
|
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); |
|
|
|
dst.create( src.size(), src.type() ); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
if (src.type() == CV_8UC1) |
|
{ |
|
nppSafeCall( nppiMirror_8u_C1R(src.ptr<Npp8u>(), src.step, |
|
dst.ptr<Npp8u>(), dst.step, sz, |
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) ); |
|
} |
|
else |
|
{ |
|
nppSafeCall( nppiMirror_8u_C4R(src.ptr<Npp8u>(), src.step, |
|
dst.ptr<Npp8u>(), dst.step, sz, |
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) ); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// sum |
|
|
|
Scalar cv::gpu::sum(const GpuMat& src) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Scalar res; |
|
#if NPP_VERSION >= 32 |
|
CV_Assert(!"disabled until fix crash"); |
|
|
|
int bufsz; |
|
|
|
if (src.type() == CV_8UC1) |
|
{ |
|
nppiReductionGetBufferHostSize_8u_C1R(sz, &bufsz); |
|
GpuMat buf(1, bufsz, CV_32S); |
|
|
|
nppSafeCall( nppiSum_8u_C1R(src.ptr<Npp8u>(), src.step, sz, buf.ptr<Npp32s>(), res.val) ); |
|
} |
|
else |
|
{ |
|
nppiReductionGetBufferHostSize_8u_C4R(sz, &bufsz); |
|
GpuMat buf(1, bufsz, CV_32S); |
|
|
|
nppSafeCall( nppiSum_8u_C4R(src.ptr<Npp8u>(), src.step, sz, buf.ptr<Npp32s>(), res.val) ); |
|
} |
|
#else |
|
if (src.type() == CV_8UC1) |
|
nppSafeCall( nppiSum_8u_C1R(src.ptr<Npp8u>(), src.step, sz, res.val) ); |
|
else |
|
nppSafeCall( nppiSum_8u_C4R(src.ptr<Npp8u>(), src.step, sz, res.val) ); |
|
#endif |
|
|
|
return res; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// minMax |
|
|
|
namespace |
|
{ |
|
void minMax_c1(const GpuMat& src, double* minVal, double* maxVal) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Npp8u min_res, max_res; |
|
|
|
nppSafeCall( nppiMinMax_8u_C1R(src.ptr<Npp8u>(), src.step, sz, &min_res, &max_res) ); |
|
|
|
if (minVal) |
|
*minVal = min_res; |
|
|
|
if (maxVal) |
|
*maxVal = max_res; |
|
} |
|
|
|
void minMax_c4(const GpuMat& src, double* minVal, double* maxVal) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Npp8u* cuMem; |
|
|
|
#if NPP_VERSION >= 32 |
|
cuMem = nppsMalloc_8u(8); |
|
#else |
|
cudaSafeCall( cudaMalloc((void**)&cuMem, 8 * sizeof(Npp8u)) ); |
|
#endif |
|
|
|
nppSafeCall( nppiMinMax_8u_C4R(src.ptr<Npp8u>(), src.step, sz, cuMem, cuMem + 4) ); |
|
|
|
if (minVal) |
|
cudaMemcpy(minVal, cuMem, 4 * sizeof(Npp8u), cudaMemcpyDeviceToHost); |
|
if (maxVal) |
|
cudaMemcpy(maxVal, cuMem + 4, 4 * sizeof(Npp8u), cudaMemcpyDeviceToHost); |
|
|
|
#if NPP_VERSION >= 32 |
|
nppsFree(cuMem); |
|
#else |
|
cudaSafeCall( cudaFree(cuMem) ); |
|
#endif |
|
} |
|
} |
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal) |
|
{ |
|
typedef void (*minMax_t)(const GpuMat& src, double* minVal, double* maxVal); |
|
static const minMax_t minMax_callers[] = {0, minMax_c1, 0, 0, minMax_c4}; |
|
|
|
CV_Assert(!"disabled until fix npp bug"); |
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4); |
|
|
|
minMax_callers[src.channels()](src, minVal, maxVal); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// LUT |
|
|
|
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst) |
|
{ |
|
class LevelsInit |
|
{ |
|
public: |
|
Npp32s pLevels[256]; |
|
const Npp32s* pLevels3[3]; |
|
int nValues3[3]; |
|
|
|
LevelsInit() |
|
{ |
|
nValues3[0] = nValues3[1] = nValues3[2] = 256; |
|
for (int i = 0; i < 256; ++i) |
|
pLevels[i] = i; |
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels; |
|
} |
|
}; |
|
static LevelsInit lvls; |
|
|
|
int cn = src.channels(); |
|
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3); |
|
CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous()); |
|
|
|
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn)); |
|
|
|
NppiSize sz; |
|
sz.height = src.rows; |
|
sz.width = src.cols; |
|
|
|
Mat nppLut; |
|
lut.convertTo(nppLut, CV_32S); |
|
|
|
if (src.type() == CV_8UC1) |
|
{ |
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz, |
|
nppLut.ptr<Npp32s>(), lvls.pLevels, 256) ); |
|
} |
|
else |
|
{ |
|
Mat nppLut3[3]; |
|
const Npp32s* pValues3[3]; |
|
if (nppLut.channels() == 1) |
|
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>(); |
|
else |
|
{ |
|
cv::split(nppLut, nppLut3); |
|
pValues3[0] = nppLut3[0].ptr<Npp32s>(); |
|
pValues3[1] = nppLut3[1].ptr<Npp32s>(); |
|
pValues3[2] = nppLut3[2].ptr<Npp32s>(); |
|
} |
|
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz, |
|
pValues3, lvls.pLevels3, lvls.nValues3) ); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// exp |
|
|
|
void cv::gpu::exp(const GpuMat& src, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiExp_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) ); |
|
#else |
|
CV_Assert(!"This function doesn't supported"); |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// log |
|
|
|
void cv::gpu::log(const GpuMat& src, GpuMat& dst) |
|
{ |
|
#if NPP_VERSION >= 32 |
|
CV_Assert(src.type() == CV_32FC1); |
|
|
|
dst.create(src.size(), src.type()); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiLn_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) ); |
|
#else |
|
CV_Assert(!"This function doesn't supported"); |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// NPP magnitide |
|
|
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
namespace |
|
{ |
|
typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI); |
|
|
|
inline void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func) |
|
{ |
|
CV_Assert(src.type() == CV_32FC2); |
|
|
|
dst.create(src.size(), CV_32FC1); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) ); |
|
} |
|
} |
|
#endif |
|
|
|
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst) |
|
{ |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
::npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R); |
|
#else |
|
CV_Assert(!"This function doesn't supported"); |
|
#endif |
|
} |
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst) |
|
{ |
|
#ifdef NPP_HAVE_COMPLEX_TYPE |
|
::npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R); |
|
#else |
|
CV_Assert(!"This function doesn't supported"); |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Polar <-> Cart |
|
|
|
namespace cv { namespace gpu { namespace mathfunc |
|
{ |
|
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream); |
|
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream); |
|
}}} |
|
|
|
namespace |
|
{ |
|
inline void cartToPolar_caller(const GpuMat& x, const GpuMat& y, GpuMat* mag, bool magSqr, GpuMat* angle, bool angleInDegrees, cudaStream_t stream) |
|
{ |
|
CV_DbgAssert(x.size() == y.size() && x.type() == y.type()); |
|
CV_Assert(x.depth() == CV_32F); |
|
|
|
if (mag) |
|
mag->create(x.size(), x.type()); |
|
if (angle) |
|
angle->create(x.size(), x.type()); |
|
|
|
GpuMat x1cn = x.reshape(1); |
|
GpuMat y1cn = y.reshape(1); |
|
GpuMat mag1cn = mag ? mag->reshape(1) : GpuMat(); |
|
GpuMat angle1cn = angle ? angle->reshape(1) : GpuMat(); |
|
|
|
mathfunc::cartToPolar_gpu(x1cn, y1cn, mag1cn, magSqr, angle1cn, angleInDegrees, stream); |
|
} |
|
|
|
inline void polarToCart_caller(const GpuMat& mag, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, cudaStream_t stream) |
|
{ |
|
CV_DbgAssert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type()); |
|
CV_Assert(mag.depth() == CV_32F); |
|
|
|
x.create(mag.size(), mag.type()); |
|
y.create(mag.size(), mag.type()); |
|
|
|
GpuMat mag1cn = mag.reshape(1); |
|
GpuMat angle1cn = angle.reshape(1); |
|
GpuMat x1cn = x.reshape(1); |
|
GpuMat y1cn = y.reshape(1); |
|
|
|
mathfunc::polarToCart_gpu(mag1cn, angle1cn, x1cn, y1cn, angleInDegrees, stream); |
|
} |
|
} |
|
|
|
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst) |
|
{ |
|
::cartToPolar_caller(x, y, &dst, false, 0, false, 0); |
|
} |
|
|
|
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst, const Stream& stream) |
|
{ |
|
::cartToPolar_caller(x, y, &dst, false, 0, false, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst) |
|
{ |
|
::cartToPolar_caller(x, y, &dst, true, 0, false, 0); |
|
} |
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst, const Stream& stream) |
|
{ |
|
::cartToPolar_caller(x, y, &dst, true, 0, false, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees) |
|
{ |
|
::cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, 0); |
|
} |
|
|
|
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, const Stream& stream) |
|
{ |
|
::cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees) |
|
{ |
|
::cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, 0); |
|
} |
|
|
|
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees, const Stream& stream) |
|
{ |
|
::cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees) |
|
{ |
|
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, 0); |
|
} |
|
|
|
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, const Stream& stream) |
|
{ |
|
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Per-element bit-wise logical matrix operations |
|
|
|
namespace cv { namespace gpu { namespace mathfunc |
|
{ |
|
void bitwise_not_caller(int rows, int cols, const PtrStep src, int elemSize, PtrStep dst, cudaStream_t stream); |
|
void bitwise_not_caller(int rows, int cols, const PtrStep src, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream); |
|
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, cudaStream_t stream); |
|
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream); |
|
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, cudaStream_t stream); |
|
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream); |
|
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, cudaStream_t stream); |
|
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream); |
|
|
|
|
|
template <int opid, typename Mask> |
|
void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream); |
|
}}} |
|
|
|
namespace |
|
{ |
|
void bitwise_not_caller(const GpuMat& src, GpuMat& dst, cudaStream_t stream) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
mathfunc::bitwise_not_caller(src.rows, src.cols, src, src.elemSize(), dst, stream); |
|
} |
|
|
|
void bitwise_not_caller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) |
|
{ |
|
CV_Assert(mask.type() == CV_8U && mask.size() == src.size()); |
|
dst.create(src.size(), src.type()); |
|
mathfunc::bitwise_not_caller(src.rows, src.cols, src, src.elemSize(), dst, mask, stream); |
|
} |
|
|
|
void bitwise_or_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) |
|
{ |
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
dst.create(src1.size(), src1.type()); |
|
mathfunc::bitwise_or_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, stream); |
|
} |
|
|
|
void bitwise_or_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) |
|
{ |
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size()); |
|
dst.create(src1.size(), src1.type()); |
|
mathfunc::bitwise_or_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, mask, stream); |
|
} |
|
|
|
void bitwise_and_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) |
|
{ |
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
dst.create(src1.size(), src1.type()); |
|
mathfunc::bitwise_and_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, stream); |
|
} |
|
|
|
void bitwise_and_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) |
|
{ |
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size()); |
|
dst.create(src1.size(), src1.type()); |
|
mathfunc::bitwise_and_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, mask, stream); |
|
} |
|
|
|
void bitwise_xor_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) |
|
{ |
|
CV_Assert(src1.size() == src2.size()); |
|
CV_Assert(src1.type() == src2.type()); |
|
dst.create(src1.size(), src1.type()); |
|
mathfunc::bitwise_xor_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, stream); |
|
} |
|
|
|
void bitwise_xor_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) |
|
{ |
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size()); |
|
dst.create(src1.size(), src1.type()); |
|
mathfunc::bitwise_xor_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, mask, stream); |
|
} |
|
} |
|
|
|
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_not_caller(src, dst, 0); |
|
else |
|
::bitwise_not_caller(src, dst, mask, 0); |
|
} |
|
|
|
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_not_caller(src, dst, StreamAccessor::getStream(stream)); |
|
else |
|
::bitwise_not_caller(src, dst, mask, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_or_caller(src1, src2, dst, 0); |
|
else |
|
::bitwise_or_caller(src1, src2, dst, mask, 0); |
|
} |
|
|
|
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_or_caller(src1, src2, dst, StreamAccessor::getStream(stream)); |
|
else |
|
::bitwise_or_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_and_caller(src1, src2, dst, 0); |
|
else |
|
::bitwise_and_caller(src1, src2, dst, mask, 0); |
|
} |
|
|
|
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_and_caller(src1, src2, dst, StreamAccessor::getStream(stream)); |
|
else |
|
::bitwise_and_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_xor_caller(src1, src2, dst, 0); |
|
else |
|
::bitwise_xor_caller(src1, src2, dst, mask, 0); |
|
} |
|
|
|
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream) |
|
{ |
|
if (mask.empty()) |
|
::bitwise_xor_caller(src1, src2, dst, StreamAccessor::getStream(stream)); |
|
else |
|
::bitwise_xor_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream)); |
|
|
|
} |
|
|
|
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat& src) |
|
{ |
|
GpuMat dst; |
|
bitwise_not(src, dst); |
|
return dst; |
|
} |
|
|
|
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat& src1, const GpuMat& src2) |
|
{ |
|
GpuMat dst; |
|
bitwise_or(src1, src2, dst); |
|
return dst; |
|
} |
|
|
|
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat& src1, const GpuMat& src2) |
|
{ |
|
GpuMat dst; |
|
bitwise_and(src1, src2, dst); |
|
return dst; |
|
} |
|
|
|
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat& src1, const GpuMat& src2) |
|
{ |
|
GpuMat dst; |
|
bitwise_xor(src1, src2, dst); |
|
return dst; |
|
} |
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|