mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
2.8 KiB
115 lines
2.8 KiB
/** |
|
* file Smoothing.cpp |
|
* brief Sample code for simple filters |
|
* author OpenCV team |
|
*/ |
|
|
|
#include <iostream> |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
/// Global Variables |
|
int DELAY_CAPTION = 1500; |
|
int DELAY_BLUR = 100; |
|
int MAX_KERNEL_LENGTH = 31; |
|
|
|
Mat src; Mat dst; |
|
char window_name[] = "Smoothing Demo"; |
|
|
|
/// Function headers |
|
int display_caption( const char* caption ); |
|
int display_dst( int delay ); |
|
|
|
|
|
/** |
|
* function main |
|
*/ |
|
int main( int argc, char ** argv ) |
|
{ |
|
namedWindow( window_name, WINDOW_AUTOSIZE ); |
|
|
|
/// Load the source image |
|
const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg"; |
|
|
|
src = imread( filename, IMREAD_COLOR ); |
|
if(src.empty()){ |
|
printf(" Error opening image\n"); |
|
printf(" Usage: ./Smoothing [image_name -- default ../data/lena.jpg] \n"); |
|
return -1; |
|
} |
|
|
|
if( display_caption( "Original Image" ) != 0 ) { return 0; } |
|
|
|
dst = src.clone(); |
|
if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; } |
|
|
|
|
|
/// Applying Homogeneous blur |
|
if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; } |
|
|
|
//![blur] |
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 ) |
|
{ blur( src, dst, Size( i, i ), Point(-1,-1) ); |
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } } |
|
//![blur] |
|
|
|
/// Applying Gaussian blur |
|
if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; } |
|
|
|
//![gaussianblur] |
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 ) |
|
{ GaussianBlur( src, dst, Size( i, i ), 0, 0 ); |
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } } |
|
//![gaussianblur] |
|
|
|
/// Applying Median blur |
|
if( display_caption( "Median Blur" ) != 0 ) { return 0; } |
|
|
|
//![medianblur] |
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 ) |
|
{ medianBlur ( src, dst, i ); |
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } } |
|
//![medianblur] |
|
|
|
/// Applying Bilateral Filter |
|
if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; } |
|
|
|
//![bilateralfilter] |
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 ) |
|
{ bilateralFilter ( src, dst, i, i*2, i/2 ); |
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } } |
|
//![bilateralfilter] |
|
|
|
/// Done |
|
display_caption( "Done!" ); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* @function display_caption |
|
*/ |
|
int display_caption( const char* caption ) |
|
{ |
|
dst = Mat::zeros( src.size(), src.type() ); |
|
putText( dst, caption, |
|
Point( src.cols/4, src.rows/2), |
|
FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) ); |
|
|
|
return display_dst(DELAY_CAPTION); |
|
} |
|
|
|
/** |
|
* @function display_dst |
|
*/ |
|
int display_dst( int delay ) |
|
{ |
|
imshow( window_name, dst ); |
|
int c = waitKey ( delay ); |
|
if( c >= 0 ) { return -1; } |
|
return 0; |
|
}
|
|
|