mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
68 lines
1.9 KiB
68 lines
1.9 KiB
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/ml.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ml; |
|
|
|
int main( int /*argc*/, char** /*argv*/ ) |
|
{ |
|
const int N = 4; |
|
const int N1 = (int)sqrt((double)N); |
|
const Scalar colors[] = |
|
{ |
|
Scalar(0,0,255), Scalar(0,255,0), |
|
Scalar(0,255,255),Scalar(255,255,0) |
|
}; |
|
|
|
int i, j; |
|
int nsamples = 100; |
|
Mat samples( nsamples, 2, CV_32FC1 ); |
|
Mat labels; |
|
Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 ); |
|
Mat sample( 1, 2, CV_32FC1 ); |
|
|
|
samples = samples.reshape(2, 0); |
|
for( i = 0; i < N; i++ ) |
|
{ |
|
// form the training samples |
|
Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N ); |
|
|
|
Scalar mean(((i%N1)+1)*img.rows/(N1+1), |
|
((i/N1)+1)*img.rows/(N1+1)); |
|
Scalar sigma(30,30); |
|
randn( samples_part, mean, sigma ); |
|
} |
|
samples = samples.reshape(1, 0); |
|
|
|
// cluster the data |
|
Ptr<EM> em_model = EM::train( samples, noArray(), labels, noArray(), |
|
EM::Params(N, EM::COV_MAT_SPHERICAL, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1))); |
|
|
|
// classify every image pixel |
|
for( i = 0; i < img.rows; i++ ) |
|
{ |
|
for( j = 0; j < img.cols; j++ ) |
|
{ |
|
sample.at<float>(0) = (float)j; |
|
sample.at<float>(1) = (float)i; |
|
int response = cvRound(em_model->predict2( sample, noArray() )[1]); |
|
Scalar c = colors[response]; |
|
|
|
circle( img, Point(j, i), 1, c*0.75, FILLED ); |
|
} |
|
} |
|
|
|
//draw the clustered samples |
|
for( i = 0; i < nsamples; i++ ) |
|
{ |
|
Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1))); |
|
circle( img, pt, 1, colors[labels.at<int>(i)], FILLED ); |
|
} |
|
|
|
imshow( "EM-clustering result", img ); |
|
waitKey(0); |
|
|
|
return 0; |
|
}
|
|
|