mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
328 lines
8.9 KiB
328 lines
8.9 KiB
/* sormql.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c_n1 = -1; |
|
static integer c__2 = 2; |
|
static integer c__65 = 65; |
|
|
|
/* Subroutine */ int sormql_(char *side, char *trans, integer *m, integer *n, |
|
integer *k, real *a, integer *lda, real *tau, real *c__, integer *ldc, |
|
real *work, integer *lwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
address a__1[2]; |
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, |
|
i__5; |
|
char ch__1[2]; |
|
|
|
/* Builtin functions */ |
|
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); |
|
|
|
/* Local variables */ |
|
integer i__; |
|
real t[4160] /* was [65][64] */; |
|
integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws; |
|
logical left; |
|
extern logical lsame_(char *, char *); |
|
integer nbmin, iinfo; |
|
extern /* Subroutine */ int sorm2l_(char *, char *, integer *, integer *, |
|
integer *, real *, integer *, real *, real *, integer *, real *, |
|
integer *), slarfb_(char *, char *, char *, char * |
|
, integer *, integer *, integer *, real *, integer *, real *, |
|
integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
extern /* Subroutine */ int slarft_(char *, char *, integer *, integer *, |
|
real *, integer *, real *, real *, integer *); |
|
logical notran; |
|
integer ldwork, lwkopt; |
|
logical lquery; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SORMQL overwrites the general real M-by-N matrix C with */ |
|
|
|
/* SIDE = 'L' SIDE = 'R' */ |
|
/* TRANS = 'N': Q * C C * Q */ |
|
/* TRANS = 'T': Q**T * C C * Q**T */ |
|
|
|
/* where Q is a real orthogonal matrix defined as the product of k */ |
|
/* elementary reflectors */ |
|
|
|
/* Q = H(k) . . . H(2) H(1) */ |
|
|
|
/* as returned by SGEQLF. Q is of order M if SIDE = 'L' and of order N */ |
|
/* if SIDE = 'R'. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* SIDE (input) CHARACTER*1 */ |
|
/* = 'L': apply Q or Q**T from the Left; */ |
|
/* = 'R': apply Q or Q**T from the Right. */ |
|
|
|
/* TRANS (input) CHARACTER*1 */ |
|
/* = 'N': No transpose, apply Q; */ |
|
/* = 'T': Transpose, apply Q**T. */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix C. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix C. N >= 0. */ |
|
|
|
/* K (input) INTEGER */ |
|
/* The number of elementary reflectors whose product defines */ |
|
/* the matrix Q. */ |
|
/* If SIDE = 'L', M >= K >= 0; */ |
|
/* if SIDE = 'R', N >= K >= 0. */ |
|
|
|
/* A (input) REAL array, dimension (LDA,K) */ |
|
/* The i-th column must contain the vector which defines the */ |
|
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */ |
|
/* SGEQLF in the last k columns of its array argument A. */ |
|
/* A is modified by the routine but restored on exit. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. */ |
|
/* If SIDE = 'L', LDA >= max(1,M); */ |
|
/* if SIDE = 'R', LDA >= max(1,N). */ |
|
|
|
/* TAU (input) REAL array, dimension (K) */ |
|
/* TAU(i) must contain the scalar factor of the elementary */ |
|
/* reflector H(i), as returned by SGEQLF. */ |
|
|
|
/* C (input/output) REAL array, dimension (LDC,N) */ |
|
/* On entry, the M-by-N matrix C. */ |
|
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */ |
|
|
|
/* LDC (input) INTEGER */ |
|
/* The leading dimension of the array C. LDC >= max(1,M). */ |
|
|
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. */ |
|
/* If SIDE = 'L', LWORK >= max(1,N); */ |
|
/* if SIDE = 'R', LWORK >= max(1,M). */ |
|
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */ |
|
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */ |
|
/* blocksize. */ |
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */ |
|
/* only calculates the optimal size of the WORK array, returns */ |
|
/* this value as the first entry of the WORK array, and no error */ |
|
/* message related to LWORK is issued by XERBLA. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Local Arrays .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--tau; |
|
c_dim1 = *ldc; |
|
c_offset = 1 + c_dim1; |
|
c__ -= c_offset; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
left = lsame_(side, "L"); |
|
notran = lsame_(trans, "N"); |
|
lquery = *lwork == -1; |
|
|
|
/* NQ is the order of Q and NW is the minimum dimension of WORK */ |
|
|
|
if (left) { |
|
nq = *m; |
|
nw = max(1,*n); |
|
} else { |
|
nq = *n; |
|
nw = max(1,*m); |
|
} |
|
if (! left && ! lsame_(side, "R")) { |
|
*info = -1; |
|
} else if (! notran && ! lsame_(trans, "T")) { |
|
*info = -2; |
|
} else if (*m < 0) { |
|
*info = -3; |
|
} else if (*n < 0) { |
|
*info = -4; |
|
} else if (*k < 0 || *k > nq) { |
|
*info = -5; |
|
} else if (*lda < max(1,nq)) { |
|
*info = -7; |
|
} else if (*ldc < max(1,*m)) { |
|
*info = -10; |
|
} |
|
|
|
if (*info == 0) { |
|
if (*m == 0 || *n == 0) { |
|
lwkopt = 1; |
|
} else { |
|
|
|
/* Determine the block size. NB may be at most NBMAX, where */ |
|
/* NBMAX is used to define the local array T. */ |
|
|
|
|
|
/* Computing MIN */ |
|
/* Writing concatenation */ |
|
i__3[0] = 1, a__1[0] = side; |
|
i__3[1] = 1, a__1[1] = trans; |
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); |
|
i__1 = 64, i__2 = ilaenv_(&c__1, "SORMQL", ch__1, m, n, k, &c_n1); |
|
nb = min(i__1,i__2); |
|
lwkopt = nw * nb; |
|
} |
|
work[1] = (real) lwkopt; |
|
|
|
if (*lwork < nw && ! lquery) { |
|
*info = -12; |
|
} |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SORMQL", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*m == 0 || *n == 0) { |
|
return 0; |
|
} |
|
|
|
nbmin = 2; |
|
ldwork = nw; |
|
if (nb > 1 && nb < *k) { |
|
iws = nw * nb; |
|
if (*lwork < iws) { |
|
nb = *lwork / ldwork; |
|
/* Computing MAX */ |
|
/* Writing concatenation */ |
|
i__3[0] = 1, a__1[0] = side; |
|
i__3[1] = 1, a__1[1] = trans; |
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); |
|
i__1 = 2, i__2 = ilaenv_(&c__2, "SORMQL", ch__1, m, n, k, &c_n1); |
|
nbmin = max(i__1,i__2); |
|
} |
|
} else { |
|
iws = nw; |
|
} |
|
|
|
if (nb < nbmin || nb >= *k) { |
|
|
|
/* Use unblocked code */ |
|
|
|
sorm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ |
|
c_offset], ldc, &work[1], &iinfo); |
|
} else { |
|
|
|
/* Use blocked code */ |
|
|
|
if (left && notran || ! left && ! notran) { |
|
i1 = 1; |
|
i2 = *k; |
|
i3 = nb; |
|
} else { |
|
i1 = (*k - 1) / nb * nb + 1; |
|
i2 = 1; |
|
i3 = -nb; |
|
} |
|
|
|
if (left) { |
|
ni = *n; |
|
} else { |
|
mi = *m; |
|
} |
|
|
|
i__1 = i2; |
|
i__2 = i3; |
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { |
|
/* Computing MIN */ |
|
i__4 = nb, i__5 = *k - i__ + 1; |
|
ib = min(i__4,i__5); |
|
|
|
/* Form the triangular factor of the block reflector */ |
|
/* H = H(i+ib-1) . . . H(i+1) H(i) */ |
|
|
|
i__4 = nq - *k + i__ + ib - 1; |
|
slarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1] |
|
, lda, &tau[i__], t, &c__65); |
|
if (left) { |
|
|
|
/* H or H' is applied to C(1:m-k+i+ib-1,1:n) */ |
|
|
|
mi = *m - *k + i__ + ib - 1; |
|
} else { |
|
|
|
/* H or H' is applied to C(1:m,1:n-k+i+ib-1) */ |
|
|
|
ni = *n - *k + i__ + ib - 1; |
|
} |
|
|
|
/* Apply H or H' */ |
|
|
|
slarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[ |
|
i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, & |
|
work[1], &ldwork); |
|
/* L10: */ |
|
} |
|
} |
|
work[1] = (real) lwkopt; |
|
return 0; |
|
|
|
/* End of SORMQL */ |
|
|
|
} /* sormql_ */
|
|
|