mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
952 lines
22 KiB
952 lines
22 KiB
/* slaed4.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int slaed4_(integer *n, integer *i__, real *d__, real *z__, |
|
real *delta, real *rho, real *dlam, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer i__1; |
|
real r__1; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
real a, b, c__; |
|
integer j; |
|
real w; |
|
integer ii; |
|
real dw, zz[3]; |
|
integer ip1; |
|
real del, eta, phi, eps, tau, psi; |
|
integer iim1, iip1; |
|
real dphi, dpsi; |
|
integer iter; |
|
real temp, prew, temp1, dltlb, dltub, midpt; |
|
integer niter; |
|
logical swtch; |
|
extern /* Subroutine */ int slaed5_(integer *, real *, real *, real *, |
|
real *, real *), slaed6_(integer *, logical *, real *, real *, |
|
real *, real *, real *, integer *); |
|
logical swtch3; |
|
extern doublereal slamch_(char *); |
|
logical orgati; |
|
real erretm, rhoinv; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* This subroutine computes the I-th updated eigenvalue of a symmetric */ |
|
/* rank-one modification to a diagonal matrix whose elements are */ |
|
/* given in the array d, and that */ |
|
|
|
/* D(i) < D(j) for i < j */ |
|
|
|
/* and that RHO > 0. This is arranged by the calling routine, and is */ |
|
/* no loss in generality. The rank-one modified system is thus */ |
|
|
|
/* diag( D ) + RHO * Z * Z_transpose. */ |
|
|
|
/* where we assume the Euclidean norm of Z is 1. */ |
|
|
|
/* The method consists of approximating the rational functions in the */ |
|
/* secular equation by simpler interpolating rational functions. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The length of all arrays. */ |
|
|
|
/* I (input) INTEGER */ |
|
/* The index of the eigenvalue to be computed. 1 <= I <= N. */ |
|
|
|
/* D (input) REAL array, dimension (N) */ |
|
/* The original eigenvalues. It is assumed that they are in */ |
|
/* order, D(I) < D(J) for I < J. */ |
|
|
|
/* Z (input) REAL array, dimension (N) */ |
|
/* The components of the updating vector. */ |
|
|
|
/* DELTA (output) REAL array, dimension (N) */ |
|
/* If N .GT. 2, DELTA contains (D(j) - lambda_I) in its j-th */ |
|
/* component. If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5 */ |
|
/* for detail. The vector DELTA contains the information necessary */ |
|
/* to construct the eigenvectors by SLAED3 and SLAED9. */ |
|
|
|
/* RHO (input) REAL */ |
|
/* The scalar in the symmetric updating formula. */ |
|
|
|
/* DLAM (output) REAL */ |
|
/* The computed lambda_I, the I-th updated eigenvalue. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* > 0: if INFO = 1, the updating process failed. */ |
|
|
|
/* Internal Parameters */ |
|
/* =================== */ |
|
|
|
/* Logical variable ORGATI (origin-at-i?) is used for distinguishing */ |
|
/* whether D(i) or D(i+1) is treated as the origin. */ |
|
|
|
/* ORGATI = .true. origin at i */ |
|
/* ORGATI = .false. origin at i+1 */ |
|
|
|
/* Logical variable SWTCH3 (switch-for-3-poles?) is for noting */ |
|
/* if we are working with THREE poles! */ |
|
|
|
/* MAXIT is the maximum number of iterations allowed for each */ |
|
/* eigenvalue. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Ren-Cang Li, Computer Science Division, University of California */ |
|
/* at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Local Arrays .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Since this routine is called in an inner loop, we do no argument */ |
|
/* checking. */ |
|
|
|
/* Quick return for N=1 and 2. */ |
|
|
|
/* Parameter adjustments */ |
|
--delta; |
|
--z__; |
|
--d__; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
if (*n == 1) { |
|
|
|
/* Presumably, I=1 upon entry */ |
|
|
|
*dlam = d__[1] + *rho * z__[1] * z__[1]; |
|
delta[1] = 1.f; |
|
return 0; |
|
} |
|
if (*n == 2) { |
|
slaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam); |
|
return 0; |
|
} |
|
|
|
/* Compute machine epsilon */ |
|
|
|
eps = slamch_("Epsilon"); |
|
rhoinv = 1.f / *rho; |
|
|
|
/* The case I = N */ |
|
|
|
if (*i__ == *n) { |
|
|
|
/* Initialize some basic variables */ |
|
|
|
ii = *n - 1; |
|
niter = 1; |
|
|
|
/* Calculate initial guess */ |
|
|
|
midpt = *rho / 2.f; |
|
|
|
/* If ||Z||_2 is not one, then TEMP should be set to */ |
|
/* RHO * ||Z||_2^2 / TWO */ |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] = d__[j] - d__[*i__] - midpt; |
|
/* L10: */ |
|
} |
|
|
|
psi = 0.f; |
|
i__1 = *n - 2; |
|
for (j = 1; j <= i__1; ++j) { |
|
psi += z__[j] * z__[j] / delta[j]; |
|
/* L20: */ |
|
} |
|
|
|
c__ = rhoinv + psi; |
|
w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[* |
|
n]; |
|
|
|
if (w <= 0.f) { |
|
temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho) |
|
+ z__[*n] * z__[*n] / *rho; |
|
if (c__ <= temp) { |
|
tau = *rho; |
|
} else { |
|
del = d__[*n] - d__[*n - 1]; |
|
a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n] |
|
; |
|
b = z__[*n] * z__[*n] * del; |
|
if (a < 0.f) { |
|
tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a); |
|
} else { |
|
tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f); |
|
} |
|
} |
|
|
|
/* It can be proved that */ |
|
/* D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */ |
|
|
|
dltlb = midpt; |
|
dltub = *rho; |
|
} else { |
|
del = d__[*n] - d__[*n - 1]; |
|
a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]; |
|
b = z__[*n] * z__[*n] * del; |
|
if (a < 0.f) { |
|
tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a); |
|
} else { |
|
tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f); |
|
} |
|
|
|
/* It can be proved that */ |
|
/* D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */ |
|
|
|
dltlb = 0.f; |
|
dltub = midpt; |
|
} |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] = d__[j] - d__[*i__] - tau; |
|
/* L30: */ |
|
} |
|
|
|
/* Evaluate PSI and the derivative DPSI */ |
|
|
|
dpsi = 0.f; |
|
psi = 0.f; |
|
erretm = 0.f; |
|
i__1 = ii; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = z__[j] / delta[j]; |
|
psi += z__[j] * temp; |
|
dpsi += temp * temp; |
|
erretm += psi; |
|
/* L40: */ |
|
} |
|
erretm = dabs(erretm); |
|
|
|
/* Evaluate PHI and the derivative DPHI */ |
|
|
|
temp = z__[*n] / delta[*n]; |
|
phi = z__[*n] * temp; |
|
dphi = temp * temp; |
|
erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * ( |
|
dpsi + dphi); |
|
|
|
w = rhoinv + phi + psi; |
|
|
|
/* Test for convergence */ |
|
|
|
if (dabs(w) <= eps * erretm) { |
|
*dlam = d__[*i__] + tau; |
|
goto L250; |
|
} |
|
|
|
if (w <= 0.f) { |
|
dltlb = dmax(dltlb,tau); |
|
} else { |
|
dltub = dmin(dltub,tau); |
|
} |
|
|
|
/* Calculate the new step */ |
|
|
|
++niter; |
|
c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi; |
|
a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * ( |
|
dpsi + dphi); |
|
b = delta[*n - 1] * delta[*n] * w; |
|
if (c__ < 0.f) { |
|
c__ = dabs(c__); |
|
} |
|
if (c__ == 0.f) { |
|
/* ETA = B/A */ |
|
/* ETA = RHO - TAU */ |
|
eta = dltub - tau; |
|
} else if (a >= 0.f) { |
|
eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / ( |
|
c__ * 2.f); |
|
} else { |
|
eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs( |
|
r__1)))); |
|
} |
|
|
|
/* Note, eta should be positive if w is negative, and */ |
|
/* eta should be negative otherwise. However, */ |
|
/* if for some reason caused by roundoff, eta*w > 0, */ |
|
/* we simply use one Newton step instead. This way */ |
|
/* will guarantee eta*w < 0. */ |
|
|
|
if (w * eta > 0.f) { |
|
eta = -w / (dpsi + dphi); |
|
} |
|
temp = tau + eta; |
|
if (temp > dltub || temp < dltlb) { |
|
if (w < 0.f) { |
|
eta = (dltub - tau) / 2.f; |
|
} else { |
|
eta = (dltlb - tau) / 2.f; |
|
} |
|
} |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] -= eta; |
|
/* L50: */ |
|
} |
|
|
|
tau += eta; |
|
|
|
/* Evaluate PSI and the derivative DPSI */ |
|
|
|
dpsi = 0.f; |
|
psi = 0.f; |
|
erretm = 0.f; |
|
i__1 = ii; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = z__[j] / delta[j]; |
|
psi += z__[j] * temp; |
|
dpsi += temp * temp; |
|
erretm += psi; |
|
/* L60: */ |
|
} |
|
erretm = dabs(erretm); |
|
|
|
/* Evaluate PHI and the derivative DPHI */ |
|
|
|
temp = z__[*n] / delta[*n]; |
|
phi = z__[*n] * temp; |
|
dphi = temp * temp; |
|
erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * ( |
|
dpsi + dphi); |
|
|
|
w = rhoinv + phi + psi; |
|
|
|
/* Main loop to update the values of the array DELTA */ |
|
|
|
iter = niter + 1; |
|
|
|
for (niter = iter; niter <= 30; ++niter) { |
|
|
|
/* Test for convergence */ |
|
|
|
if (dabs(w) <= eps * erretm) { |
|
*dlam = d__[*i__] + tau; |
|
goto L250; |
|
} |
|
|
|
if (w <= 0.f) { |
|
dltlb = dmax(dltlb,tau); |
|
} else { |
|
dltub = dmin(dltub,tau); |
|
} |
|
|
|
/* Calculate the new step */ |
|
|
|
c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi; |
|
a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * |
|
(dpsi + dphi); |
|
b = delta[*n - 1] * delta[*n] * w; |
|
if (a >= 0.f) { |
|
eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / |
|
(c__ * 2.f); |
|
} else { |
|
eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs( |
|
r__1)))); |
|
} |
|
|
|
/* Note, eta should be positive if w is negative, and */ |
|
/* eta should be negative otherwise. However, */ |
|
/* if for some reason caused by roundoff, eta*w > 0, */ |
|
/* we simply use one Newton step instead. This way */ |
|
/* will guarantee eta*w < 0. */ |
|
|
|
if (w * eta > 0.f) { |
|
eta = -w / (dpsi + dphi); |
|
} |
|
temp = tau + eta; |
|
if (temp > dltub || temp < dltlb) { |
|
if (w < 0.f) { |
|
eta = (dltub - tau) / 2.f; |
|
} else { |
|
eta = (dltlb - tau) / 2.f; |
|
} |
|
} |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] -= eta; |
|
/* L70: */ |
|
} |
|
|
|
tau += eta; |
|
|
|
/* Evaluate PSI and the derivative DPSI */ |
|
|
|
dpsi = 0.f; |
|
psi = 0.f; |
|
erretm = 0.f; |
|
i__1 = ii; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = z__[j] / delta[j]; |
|
psi += z__[j] * temp; |
|
dpsi += temp * temp; |
|
erretm += psi; |
|
/* L80: */ |
|
} |
|
erretm = dabs(erretm); |
|
|
|
/* Evaluate PHI and the derivative DPHI */ |
|
|
|
temp = z__[*n] / delta[*n]; |
|
phi = z__[*n] * temp; |
|
dphi = temp * temp; |
|
erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * |
|
(dpsi + dphi); |
|
|
|
w = rhoinv + phi + psi; |
|
/* L90: */ |
|
} |
|
|
|
/* Return with INFO = 1, NITER = MAXIT and not converged */ |
|
|
|
*info = 1; |
|
*dlam = d__[*i__] + tau; |
|
goto L250; |
|
|
|
/* End for the case I = N */ |
|
|
|
} else { |
|
|
|
/* The case for I < N */ |
|
|
|
niter = 1; |
|
ip1 = *i__ + 1; |
|
|
|
/* Calculate initial guess */ |
|
|
|
del = d__[ip1] - d__[*i__]; |
|
midpt = del / 2.f; |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] = d__[j] - d__[*i__] - midpt; |
|
/* L100: */ |
|
} |
|
|
|
psi = 0.f; |
|
i__1 = *i__ - 1; |
|
for (j = 1; j <= i__1; ++j) { |
|
psi += z__[j] * z__[j] / delta[j]; |
|
/* L110: */ |
|
} |
|
|
|
phi = 0.f; |
|
i__1 = *i__ + 2; |
|
for (j = *n; j >= i__1; --j) { |
|
phi += z__[j] * z__[j] / delta[j]; |
|
/* L120: */ |
|
} |
|
c__ = rhoinv + psi + phi; |
|
w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] / |
|
delta[ip1]; |
|
|
|
if (w > 0.f) { |
|
|
|
/* d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */ |
|
|
|
/* We choose d(i) as origin. */ |
|
|
|
orgati = TRUE_; |
|
a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1]; |
|
b = z__[*i__] * z__[*i__] * del; |
|
if (a > 0.f) { |
|
tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs( |
|
r__1)))); |
|
} else { |
|
tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / |
|
(c__ * 2.f); |
|
} |
|
dltlb = 0.f; |
|
dltub = midpt; |
|
} else { |
|
|
|
/* (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */ |
|
|
|
/* We choose d(i+1) as origin. */ |
|
|
|
orgati = FALSE_; |
|
a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1]; |
|
b = z__[ip1] * z__[ip1] * del; |
|
if (a < 0.f) { |
|
tau = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, dabs( |
|
r__1)))); |
|
} else { |
|
tau = -(a + sqrt((r__1 = a * a + b * 4.f * c__, dabs(r__1)))) |
|
/ (c__ * 2.f); |
|
} |
|
dltlb = -midpt; |
|
dltub = 0.f; |
|
} |
|
|
|
if (orgati) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] = d__[j] - d__[*i__] - tau; |
|
/* L130: */ |
|
} |
|
} else { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] = d__[j] - d__[ip1] - tau; |
|
/* L140: */ |
|
} |
|
} |
|
if (orgati) { |
|
ii = *i__; |
|
} else { |
|
ii = *i__ + 1; |
|
} |
|
iim1 = ii - 1; |
|
iip1 = ii + 1; |
|
|
|
/* Evaluate PSI and the derivative DPSI */ |
|
|
|
dpsi = 0.f; |
|
psi = 0.f; |
|
erretm = 0.f; |
|
i__1 = iim1; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = z__[j] / delta[j]; |
|
psi += z__[j] * temp; |
|
dpsi += temp * temp; |
|
erretm += psi; |
|
/* L150: */ |
|
} |
|
erretm = dabs(erretm); |
|
|
|
/* Evaluate PHI and the derivative DPHI */ |
|
|
|
dphi = 0.f; |
|
phi = 0.f; |
|
i__1 = iip1; |
|
for (j = *n; j >= i__1; --j) { |
|
temp = z__[j] / delta[j]; |
|
phi += z__[j] * temp; |
|
dphi += temp * temp; |
|
erretm += phi; |
|
/* L160: */ |
|
} |
|
|
|
w = rhoinv + phi + psi; |
|
|
|
/* W is the value of the secular function with */ |
|
/* its ii-th element removed. */ |
|
|
|
swtch3 = FALSE_; |
|
if (orgati) { |
|
if (w < 0.f) { |
|
swtch3 = TRUE_; |
|
} |
|
} else { |
|
if (w > 0.f) { |
|
swtch3 = TRUE_; |
|
} |
|
} |
|
if (ii == 1 || ii == *n) { |
|
swtch3 = FALSE_; |
|
} |
|
|
|
temp = z__[ii] / delta[ii]; |
|
dw = dpsi + dphi + temp * temp; |
|
temp = z__[ii] * temp; |
|
w += temp; |
|
erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 3.f |
|
+ dabs(tau) * dw; |
|
|
|
/* Test for convergence */ |
|
|
|
if (dabs(w) <= eps * erretm) { |
|
if (orgati) { |
|
*dlam = d__[*i__] + tau; |
|
} else { |
|
*dlam = d__[ip1] + tau; |
|
} |
|
goto L250; |
|
} |
|
|
|
if (w <= 0.f) { |
|
dltlb = dmax(dltlb,tau); |
|
} else { |
|
dltub = dmin(dltub,tau); |
|
} |
|
|
|
/* Calculate the new step */ |
|
|
|
++niter; |
|
if (! swtch3) { |
|
if (orgati) { |
|
/* Computing 2nd power */ |
|
r__1 = z__[*i__] / delta[*i__]; |
|
c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (r__1 * |
|
r__1); |
|
} else { |
|
/* Computing 2nd power */ |
|
r__1 = z__[ip1] / delta[ip1]; |
|
c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (r__1 * |
|
r__1); |
|
} |
|
a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] * |
|
dw; |
|
b = delta[*i__] * delta[ip1] * w; |
|
if (c__ == 0.f) { |
|
if (a == 0.f) { |
|
if (orgati) { |
|
a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] * |
|
(dpsi + dphi); |
|
} else { |
|
a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] * |
|
(dpsi + dphi); |
|
} |
|
} |
|
eta = b / a; |
|
} else if (a <= 0.f) { |
|
eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / |
|
(c__ * 2.f); |
|
} else { |
|
eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs( |
|
r__1)))); |
|
} |
|
} else { |
|
|
|
/* Interpolation using THREE most relevant poles */ |
|
|
|
temp = rhoinv + psi + phi; |
|
if (orgati) { |
|
temp1 = z__[iim1] / delta[iim1]; |
|
temp1 *= temp1; |
|
c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[ |
|
iip1]) * temp1; |
|
zz[0] = z__[iim1] * z__[iim1]; |
|
zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi); |
|
} else { |
|
temp1 = z__[iip1] / delta[iip1]; |
|
temp1 *= temp1; |
|
c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[ |
|
iim1]) * temp1; |
|
zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1)); |
|
zz[2] = z__[iip1] * z__[iip1]; |
|
} |
|
zz[1] = z__[ii] * z__[ii]; |
|
slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info); |
|
if (*info != 0) { |
|
goto L250; |
|
} |
|
} |
|
|
|
/* Note, eta should be positive if w is negative, and */ |
|
/* eta should be negative otherwise. However, */ |
|
/* if for some reason caused by roundoff, eta*w > 0, */ |
|
/* we simply use one Newton step instead. This way */ |
|
/* will guarantee eta*w < 0. */ |
|
|
|
if (w * eta >= 0.f) { |
|
eta = -w / dw; |
|
} |
|
temp = tau + eta; |
|
if (temp > dltub || temp < dltlb) { |
|
if (w < 0.f) { |
|
eta = (dltub - tau) / 2.f; |
|
} else { |
|
eta = (dltlb - tau) / 2.f; |
|
} |
|
} |
|
|
|
prew = w; |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] -= eta; |
|
/* L180: */ |
|
} |
|
|
|
/* Evaluate PSI and the derivative DPSI */ |
|
|
|
dpsi = 0.f; |
|
psi = 0.f; |
|
erretm = 0.f; |
|
i__1 = iim1; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = z__[j] / delta[j]; |
|
psi += z__[j] * temp; |
|
dpsi += temp * temp; |
|
erretm += psi; |
|
/* L190: */ |
|
} |
|
erretm = dabs(erretm); |
|
|
|
/* Evaluate PHI and the derivative DPHI */ |
|
|
|
dphi = 0.f; |
|
phi = 0.f; |
|
i__1 = iip1; |
|
for (j = *n; j >= i__1; --j) { |
|
temp = z__[j] / delta[j]; |
|
phi += z__[j] * temp; |
|
dphi += temp * temp; |
|
erretm += phi; |
|
/* L200: */ |
|
} |
|
|
|
temp = z__[ii] / delta[ii]; |
|
dw = dpsi + dphi + temp * temp; |
|
temp = z__[ii] * temp; |
|
w = rhoinv + phi + psi + temp; |
|
erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 3.f |
|
+ (r__1 = tau + eta, dabs(r__1)) * dw; |
|
|
|
swtch = FALSE_; |
|
if (orgati) { |
|
if (-w > dabs(prew) / 10.f) { |
|
swtch = TRUE_; |
|
} |
|
} else { |
|
if (w > dabs(prew) / 10.f) { |
|
swtch = TRUE_; |
|
} |
|
} |
|
|
|
tau += eta; |
|
|
|
/* Main loop to update the values of the array DELTA */ |
|
|
|
iter = niter + 1; |
|
|
|
for (niter = iter; niter <= 30; ++niter) { |
|
|
|
/* Test for convergence */ |
|
|
|
if (dabs(w) <= eps * erretm) { |
|
if (orgati) { |
|
*dlam = d__[*i__] + tau; |
|
} else { |
|
*dlam = d__[ip1] + tau; |
|
} |
|
goto L250; |
|
} |
|
|
|
if (w <= 0.f) { |
|
dltlb = dmax(dltlb,tau); |
|
} else { |
|
dltub = dmin(dltub,tau); |
|
} |
|
|
|
/* Calculate the new step */ |
|
|
|
if (! swtch3) { |
|
if (! swtch) { |
|
if (orgati) { |
|
/* Computing 2nd power */ |
|
r__1 = z__[*i__] / delta[*i__]; |
|
c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * ( |
|
r__1 * r__1); |
|
} else { |
|
/* Computing 2nd power */ |
|
r__1 = z__[ip1] / delta[ip1]; |
|
c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * |
|
(r__1 * r__1); |
|
} |
|
} else { |
|
temp = z__[ii] / delta[ii]; |
|
if (orgati) { |
|
dpsi += temp * temp; |
|
} else { |
|
dphi += temp * temp; |
|
} |
|
c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi; |
|
} |
|
a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] |
|
* dw; |
|
b = delta[*i__] * delta[ip1] * w; |
|
if (c__ == 0.f) { |
|
if (a == 0.f) { |
|
if (! swtch) { |
|
if (orgati) { |
|
a = z__[*i__] * z__[*i__] + delta[ip1] * |
|
delta[ip1] * (dpsi + dphi); |
|
} else { |
|
a = z__[ip1] * z__[ip1] + delta[*i__] * delta[ |
|
*i__] * (dpsi + dphi); |
|
} |
|
} else { |
|
a = delta[*i__] * delta[*i__] * dpsi + delta[ip1] |
|
* delta[ip1] * dphi; |
|
} |
|
} |
|
eta = b / a; |
|
} else if (a <= 0.f) { |
|
eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)) |
|
)) / (c__ * 2.f); |
|
} else { |
|
eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, |
|
dabs(r__1)))); |
|
} |
|
} else { |
|
|
|
/* Interpolation using THREE most relevant poles */ |
|
|
|
temp = rhoinv + psi + phi; |
|
if (swtch) { |
|
c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi; |
|
zz[0] = delta[iim1] * delta[iim1] * dpsi; |
|
zz[2] = delta[iip1] * delta[iip1] * dphi; |
|
} else { |
|
if (orgati) { |
|
temp1 = z__[iim1] / delta[iim1]; |
|
temp1 *= temp1; |
|
c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] |
|
- d__[iip1]) * temp1; |
|
zz[0] = z__[iim1] * z__[iim1]; |
|
zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + |
|
dphi); |
|
} else { |
|
temp1 = z__[iip1] / delta[iip1]; |
|
temp1 *= temp1; |
|
c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] |
|
- d__[iim1]) * temp1; |
|
zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - |
|
temp1)); |
|
zz[2] = z__[iip1] * z__[iip1]; |
|
} |
|
} |
|
slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, |
|
info); |
|
if (*info != 0) { |
|
goto L250; |
|
} |
|
} |
|
|
|
/* Note, eta should be positive if w is negative, and */ |
|
/* eta should be negative otherwise. However, */ |
|
/* if for some reason caused by roundoff, eta*w > 0, */ |
|
/* we simply use one Newton step instead. This way */ |
|
/* will guarantee eta*w < 0. */ |
|
|
|
if (w * eta >= 0.f) { |
|
eta = -w / dw; |
|
} |
|
temp = tau + eta; |
|
if (temp > dltub || temp < dltlb) { |
|
if (w < 0.f) { |
|
eta = (dltub - tau) / 2.f; |
|
} else { |
|
eta = (dltlb - tau) / 2.f; |
|
} |
|
} |
|
|
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
delta[j] -= eta; |
|
/* L210: */ |
|
} |
|
|
|
tau += eta; |
|
prew = w; |
|
|
|
/* Evaluate PSI and the derivative DPSI */ |
|
|
|
dpsi = 0.f; |
|
psi = 0.f; |
|
erretm = 0.f; |
|
i__1 = iim1; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = z__[j] / delta[j]; |
|
psi += z__[j] * temp; |
|
dpsi += temp * temp; |
|
erretm += psi; |
|
/* L220: */ |
|
} |
|
erretm = dabs(erretm); |
|
|
|
/* Evaluate PHI and the derivative DPHI */ |
|
|
|
dphi = 0.f; |
|
phi = 0.f; |
|
i__1 = iip1; |
|
for (j = *n; j >= i__1; --j) { |
|
temp = z__[j] / delta[j]; |
|
phi += z__[j] * temp; |
|
dphi += temp * temp; |
|
erretm += phi; |
|
/* L230: */ |
|
} |
|
|
|
temp = z__[ii] / delta[ii]; |
|
dw = dpsi + dphi + temp * temp; |
|
temp = z__[ii] * temp; |
|
w = rhoinv + phi + psi + temp; |
|
erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * |
|
3.f + dabs(tau) * dw; |
|
if (w * prew > 0.f && dabs(w) > dabs(prew) / 10.f) { |
|
swtch = ! swtch; |
|
} |
|
|
|
/* L240: */ |
|
} |
|
|
|
/* Return with INFO = 1, NITER = MAXIT and not converged */ |
|
|
|
*info = 1; |
|
if (orgati) { |
|
*dlam = d__[*i__] + tau; |
|
} else { |
|
*dlam = d__[ip1] + tau; |
|
} |
|
|
|
} |
|
|
|
L250: |
|
|
|
return 0; |
|
|
|
/* End of SLAED4 */ |
|
|
|
} /* slaed4_ */
|
|
|