mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
699 lines
22 KiB
699 lines
22 KiB
/* sgelsd.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__9 = 9; |
|
static integer c__0 = 0; |
|
static integer c__6 = 6; |
|
static integer c_n1 = -1; |
|
static integer c__1 = 1; |
|
static real c_b81 = 0.f; |
|
|
|
/* Subroutine */ int sgelsd_(integer *m, integer *n, integer *nrhs, real *a, |
|
integer *lda, real *b, integer *ldb, real *s, real *rcond, integer * |
|
rank, real *work, integer *lwork, integer *iwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; |
|
|
|
/* Builtin functions */ |
|
double log(doublereal); |
|
|
|
/* Local variables */ |
|
integer ie, il, mm; |
|
real eps, anrm, bnrm; |
|
integer itau, nlvl, iascl, ibscl; |
|
real sfmin; |
|
integer minmn, maxmn, itaup, itauq, mnthr, nwork; |
|
extern /* Subroutine */ int slabad_(real *, real *), sgebrd_(integer *, |
|
integer *, real *, integer *, real *, real *, real *, real *, |
|
real *, integer *, integer *); |
|
extern doublereal slamch_(char *), slange_(char *, integer *, |
|
integer *, real *, integer *, real *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
real bignum; |
|
extern /* Subroutine */ int sgelqf_(integer *, integer *, real *, integer |
|
*, real *, real *, integer *, integer *), slalsd_(char *, integer |
|
*, integer *, integer *, real *, real *, real *, integer *, real * |
|
, integer *, real *, integer *, integer *), slascl_(char * |
|
, integer *, integer *, real *, real *, integer *, integer *, |
|
real *, integer *, integer *); |
|
integer wlalsd; |
|
extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer |
|
*, real *, real *, integer *, integer *), slacpy_(char *, integer |
|
*, integer *, real *, integer *, real *, integer *), |
|
slaset_(char *, integer *, integer *, real *, real *, real *, |
|
integer *); |
|
integer ldwork; |
|
extern /* Subroutine */ int sormbr_(char *, char *, char *, integer *, |
|
integer *, integer *, real *, integer *, real *, real *, integer * |
|
, real *, integer *, integer *); |
|
integer liwork, minwrk, maxwrk; |
|
real smlnum; |
|
extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *, |
|
integer *, real *, integer *, real *, real *, integer *, real *, |
|
integer *, integer *); |
|
logical lquery; |
|
integer smlsiz; |
|
extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, |
|
integer *, real *, integer *, real *, real *, integer *, real *, |
|
integer *, integer *); |
|
|
|
|
|
/* -- LAPACK driver routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SGELSD computes the minimum-norm solution to a real linear least */ |
|
/* squares problem: */ |
|
/* minimize 2-norm(| b - A*x |) */ |
|
/* using the singular value decomposition (SVD) of A. A is an M-by-N */ |
|
/* matrix which may be rank-deficient. */ |
|
|
|
/* Several right hand side vectors b and solution vectors x can be */ |
|
/* handled in a single call; they are stored as the columns of the */ |
|
/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ |
|
/* matrix X. */ |
|
|
|
/* The problem is solved in three steps: */ |
|
/* (1) Reduce the coefficient matrix A to bidiagonal form with */ |
|
/* Householder transformations, reducing the original problem */ |
|
/* into a "bidiagonal least squares problem" (BLS) */ |
|
/* (2) Solve the BLS using a divide and conquer approach. */ |
|
/* (3) Apply back all the Householder tranformations to solve */ |
|
/* the original least squares problem. */ |
|
|
|
/* The effective rank of A is determined by treating as zero those */ |
|
/* singular values which are less than RCOND times the largest singular */ |
|
/* value. */ |
|
|
|
/* The divide and conquer algorithm makes very mild assumptions about */ |
|
/* floating point arithmetic. It will work on machines with a guard */ |
|
/* digit in add/subtract, or on those binary machines without guard */ |
|
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ |
|
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ |
|
/* without guard digits, but we know of none. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of A. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of A. N >= 0. */ |
|
|
|
/* NRHS (input) INTEGER */ |
|
/* The number of right hand sides, i.e., the number of columns */ |
|
/* of the matrices B and X. NRHS >= 0. */ |
|
|
|
/* A (input) REAL array, dimension (LDA,N) */ |
|
/* On entry, the M-by-N matrix A. */ |
|
/* On exit, A has been destroyed. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,M). */ |
|
|
|
/* B (input/output) REAL array, dimension (LDB,NRHS) */ |
|
/* On entry, the M-by-NRHS right hand side matrix B. */ |
|
/* On exit, B is overwritten by the N-by-NRHS solution */ |
|
/* matrix X. If m >= n and RANK = n, the residual */ |
|
/* sum-of-squares for the solution in the i-th column is given */ |
|
/* by the sum of squares of elements n+1:m in that column. */ |
|
|
|
/* LDB (input) INTEGER */ |
|
/* The leading dimension of the array B. LDB >= max(1,max(M,N)). */ |
|
|
|
/* S (output) REAL array, dimension (min(M,N)) */ |
|
/* The singular values of A in decreasing order. */ |
|
/* The condition number of A in the 2-norm = S(1)/S(min(m,n)). */ |
|
|
|
/* RCOND (input) REAL */ |
|
/* RCOND is used to determine the effective rank of A. */ |
|
/* Singular values S(i) <= RCOND*S(1) are treated as zero. */ |
|
/* If RCOND < 0, machine precision is used instead. */ |
|
|
|
/* RANK (output) INTEGER */ |
|
/* The effective rank of A, i.e., the number of singular values */ |
|
/* which are greater than RCOND*S(1). */ |
|
|
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. LWORK must be at least 1. */ |
|
/* The exact minimum amount of workspace needed depends on M, */ |
|
/* N and NRHS. As long as LWORK is at least */ |
|
/* 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, */ |
|
/* if M is greater than or equal to N or */ |
|
/* 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, */ |
|
/* if M is less than N, the code will execute correctly. */ |
|
/* SMLSIZ is returned by ILAENV and is equal to the maximum */ |
|
/* size of the subproblems at the bottom of the computation */ |
|
/* tree (usually about 25), and */ |
|
/* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */ |
|
/* For good performance, LWORK should generally be larger. */ |
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */ |
|
/* only calculates the optimal size of the array WORK and the */ |
|
/* minimum size of the array IWORK, and returns these values as */ |
|
/* the first entries of the WORK and IWORK arrays, and no error */ |
|
/* message related to LWORK is issued by XERBLA. */ |
|
|
|
/* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */ |
|
/* LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN), */ |
|
/* where MINMN = MIN( M,N ). */ |
|
/* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
/* > 0: the algorithm for computing the SVD failed to converge; */ |
|
/* if INFO = i, i off-diagonal elements of an intermediate */ |
|
/* bidiagonal form did not converge to zero. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
/* Osni Marques, LBNL/NERSC, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
--s; |
|
--work; |
|
--iwork; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
minmn = min(*m,*n); |
|
maxmn = max(*m,*n); |
|
lquery = *lwork == -1; |
|
if (*m < 0) { |
|
*info = -1; |
|
} else if (*n < 0) { |
|
*info = -2; |
|
} else if (*nrhs < 0) { |
|
*info = -3; |
|
} else if (*lda < max(1,*m)) { |
|
*info = -5; |
|
} else if (*ldb < max(1,maxmn)) { |
|
*info = -7; |
|
} |
|
|
|
/* Compute workspace. */ |
|
/* (Note: Comments in the code beginning "Workspace:" describe the */ |
|
/* minimal amount of workspace needed at that point in the code, */ |
|
/* as well as the preferred amount for good performance. */ |
|
/* NB refers to the optimal block size for the immediately */ |
|
/* following subroutine, as returned by ILAENV.) */ |
|
|
|
if (*info == 0) { |
|
minwrk = 1; |
|
maxwrk = 1; |
|
liwork = 1; |
|
if (minmn > 0) { |
|
smlsiz = ilaenv_(&c__9, "SGELSD", " ", &c__0, &c__0, &c__0, &c__0); |
|
mnthr = ilaenv_(&c__6, "SGELSD", " ", m, n, nrhs, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log( |
|
2.f)) + 1; |
|
nlvl = max(i__1,0); |
|
liwork = minmn * 3 * nlvl + minmn * 11; |
|
mm = *m; |
|
if (*m >= *n && *m >= mnthr) { |
|
|
|
/* Path 1a - overdetermined, with many more rows than */ |
|
/* columns. */ |
|
|
|
mm = *n; |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", |
|
" ", m, n, &c_n1, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "SORMQR", |
|
"LT", m, nrhs, n, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
} |
|
if (*m >= *n) { |
|
|
|
/* Path 1 - overdetermined or exactly determined. */ |
|
|
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, |
|
"SGEBRD", " ", &mm, n, &c_n1, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "SORMBR" |
|
, "QLT", &mm, nrhs, n, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, |
|
"SORMBR", "PLN", n, nrhs, n, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing 2nd power */ |
|
i__1 = smlsiz + 1; |
|
wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n * |
|
*nrhs + i__1 * i__1; |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *n * 3 + wlalsd; |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = max(i__1, |
|
i__2), i__2 = *n * 3 + wlalsd; |
|
minwrk = max(i__1,i__2); |
|
} |
|
if (*n > *m) { |
|
/* Computing 2nd power */ |
|
i__1 = smlsiz + 1; |
|
wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m * |
|
*nrhs + i__1 * i__1; |
|
if (*n >= mnthr) { |
|
|
|
/* Path 2a - underdetermined, with many more columns */ |
|
/* than rows. */ |
|
|
|
maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, & |
|
c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * |
|
ilaenv_(&c__1, "SGEBRD", " ", m, m, &c_n1, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * |
|
ilaenv_(&c__1, "SORMBR", "QLT", m, nrhs, m, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * |
|
ilaenv_(&c__1, "SORMBR", "PLN", m, nrhs, m, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
if (*nrhs > 1) { |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs; |
|
maxwrk = max(i__1,i__2); |
|
} else { |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * *m + (*m << 1); |
|
maxwrk = max(i__1,i__2); |
|
} |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "SORMLQ" |
|
, "LT", n, nrhs, m, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd; |
|
maxwrk = max(i__1,i__2); |
|
/* XXX: Ensure the Path 2a case below is triggered. The workspace */ |
|
/* calculation should use queries for all routines eventually. */ |
|
/* Computing MAX */ |
|
/* Computing MAX */ |
|
i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), |
|
i__3 = max(i__3,*nrhs), i__4 = *n - *m * 3; |
|
i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + max(i__3,i__4) |
|
; |
|
maxwrk = max(i__1,i__2); |
|
} else { |
|
|
|
/* Path 2 - remaining underdetermined cases. */ |
|
|
|
maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "SGEBRD", |
|
" ", m, n, &c_n1, &c_n1); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, |
|
"SORMBR", "QLT", m, nrhs, n, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "SORM" |
|
"BR", "PLN", n, nrhs, m, &c_n1); |
|
maxwrk = max(i__1,i__2); |
|
/* Computing MAX */ |
|
i__1 = maxwrk, i__2 = *m * 3 + wlalsd; |
|
maxwrk = max(i__1,i__2); |
|
} |
|
/* Computing MAX */ |
|
i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = max(i__1, |
|
i__2), i__2 = *m * 3 + wlalsd; |
|
minwrk = max(i__1,i__2); |
|
} |
|
} |
|
minwrk = min(minwrk,maxwrk); |
|
work[1] = (real) maxwrk; |
|
iwork[1] = liwork; |
|
|
|
if (*lwork < minwrk && ! lquery) { |
|
*info = -12; |
|
} |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SGELSD", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible. */ |
|
|
|
if (*m == 0 || *n == 0) { |
|
*rank = 0; |
|
return 0; |
|
} |
|
|
|
/* Get machine parameters. */ |
|
|
|
eps = slamch_("P"); |
|
sfmin = slamch_("S"); |
|
smlnum = sfmin / eps; |
|
bignum = 1.f / smlnum; |
|
slabad_(&smlnum, &bignum); |
|
|
|
/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */ |
|
|
|
anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]); |
|
iascl = 0; |
|
if (anrm > 0.f && anrm < smlnum) { |
|
|
|
/* Scale matrix norm up to SMLNUM. */ |
|
|
|
slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, |
|
info); |
|
iascl = 1; |
|
} else if (anrm > bignum) { |
|
|
|
/* Scale matrix norm down to BIGNUM. */ |
|
|
|
slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, |
|
info); |
|
iascl = 2; |
|
} else if (anrm == 0.f) { |
|
|
|
/* Matrix all zero. Return zero solution. */ |
|
|
|
i__1 = max(*m,*n); |
|
slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[b_offset], ldb); |
|
slaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1); |
|
*rank = 0; |
|
goto L10; |
|
} |
|
|
|
/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */ |
|
|
|
bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]); |
|
ibscl = 0; |
|
if (bnrm > 0.f && bnrm < smlnum) { |
|
|
|
/* Scale matrix norm up to SMLNUM. */ |
|
|
|
slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, |
|
info); |
|
ibscl = 1; |
|
} else if (bnrm > bignum) { |
|
|
|
/* Scale matrix norm down to BIGNUM. */ |
|
|
|
slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, |
|
info); |
|
ibscl = 2; |
|
} |
|
|
|
/* If M < N make sure certain entries of B are zero. */ |
|
|
|
if (*m < *n) { |
|
i__1 = *n - *m; |
|
slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[*m + 1 + b_dim1], ldb); |
|
} |
|
|
|
/* Overdetermined case. */ |
|
|
|
if (*m >= *n) { |
|
|
|
/* Path 1 - overdetermined or exactly determined. */ |
|
|
|
mm = *m; |
|
if (*m >= mnthr) { |
|
|
|
/* Path 1a - overdetermined, with many more rows than columns. */ |
|
|
|
mm = *n; |
|
itau = 1; |
|
nwork = itau + *n; |
|
|
|
/* Compute A=Q*R. */ |
|
/* (Workspace: need 2*N, prefer N+N*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, |
|
info); |
|
|
|
/* Multiply B by transpose(Q). */ |
|
/* (Workspace: need N+NRHS, prefer N+NRHS*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ |
|
b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
/* Zero out below R. */ |
|
|
|
if (*n > 1) { |
|
i__1 = *n - 1; |
|
i__2 = *n - 1; |
|
slaset_("L", &i__1, &i__2, &c_b81, &c_b81, &a[a_dim1 + 2], |
|
lda); |
|
} |
|
} |
|
|
|
ie = 1; |
|
itauq = ie + *n; |
|
itaup = itauq + *n; |
|
nwork = itaup + *n; |
|
|
|
/* Bidiagonalize R in A. */ |
|
/* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
|
work[itaup], &work[nwork], &i__1, info); |
|
|
|
/* Multiply B by transpose of left bidiagonalizing vectors of R. */ |
|
/* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], |
|
&b[b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
/* Solve the bidiagonal least squares problem. */ |
|
|
|
slalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb, |
|
rcond, rank, &work[nwork], &iwork[1], info); |
|
if (*info != 0) { |
|
goto L10; |
|
} |
|
|
|
/* Multiply B by right bidiagonalizing vectors of R. */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], & |
|
b[b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
} else /* if(complicated condition) */ { |
|
/* Computing MAX */ |
|
i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max( |
|
i__1,*nrhs), i__2 = *n - *m * 3, i__1 = max(i__1,i__2); |
|
if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,wlalsd)) { |
|
|
|
/* Path 2a - underdetermined, with many more columns than rows */ |
|
/* and sufficient workspace for an efficient algorithm. */ |
|
|
|
ldwork = *m; |
|
/* Computing MAX */ |
|
/* Computing MAX */ |
|
i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = |
|
max(i__3,*nrhs), i__4 = *n - *m * 3; |
|
i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + |
|
*m + *m * *nrhs, i__1 = max(i__1,i__2), i__2 = (*m << 2) |
|
+ *m * *lda + wlalsd; |
|
if (*lwork >= max(i__1,i__2)) { |
|
ldwork = *lda; |
|
} |
|
itau = 1; |
|
nwork = *m + 1; |
|
|
|
/* Compute A=L*Q. */ |
|
/* (Workspace: need 2*M, prefer M+M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, |
|
info); |
|
il = nwork; |
|
|
|
/* Copy L to WORK(IL), zeroing out above its diagonal. */ |
|
|
|
slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork); |
|
i__1 = *m - 1; |
|
i__2 = *m - 1; |
|
slaset_("U", &i__1, &i__2, &c_b81, &c_b81, &work[il + ldwork], & |
|
ldwork); |
|
ie = il + ldwork * *m; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize L in WORK(IL). */ |
|
/* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq], |
|
&work[itaup], &work[nwork], &i__1, info); |
|
|
|
/* Multiply B by transpose of left bidiagonalizing vectors of L. */ |
|
/* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[ |
|
itauq], &b[b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
/* Solve the bidiagonal least squares problem. */ |
|
|
|
slalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], |
|
ldb, rcond, rank, &work[nwork], &iwork[1], info); |
|
if (*info != 0) { |
|
goto L10; |
|
} |
|
|
|
/* Multiply B by right bidiagonalizing vectors of L. */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[ |
|
itaup], &b[b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
/* Zero out below first M rows of B. */ |
|
|
|
i__1 = *n - *m; |
|
slaset_("F", &i__1, nrhs, &c_b81, &c_b81, &b[*m + 1 + b_dim1], |
|
ldb); |
|
nwork = itau + *m; |
|
|
|
/* Multiply transpose(Q) by B. */ |
|
/* (Workspace: need M+NRHS, prefer M+NRHS*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ |
|
b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
} else { |
|
|
|
/* Path 2 - remaining underdetermined cases. */ |
|
|
|
ie = 1; |
|
itauq = ie + *m; |
|
itaup = itauq + *m; |
|
nwork = itaup + *m; |
|
|
|
/* Bidiagonalize A. */ |
|
/* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], & |
|
work[itaup], &work[nwork], &i__1, info); |
|
|
|
/* Multiply B by transpose of left bidiagonalizing vectors. */ |
|
/* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq] |
|
, &b[b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
/* Solve the bidiagonal least squares problem. */ |
|
|
|
slalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset], |
|
ldb, rcond, rank, &work[nwork], &iwork[1], info); |
|
if (*info != 0) { |
|
goto L10; |
|
} |
|
|
|
/* Multiply B by right bidiagonalizing vectors of A. */ |
|
|
|
i__1 = *lwork - nwork + 1; |
|
sormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup] |
|
, &b[b_offset], ldb, &work[nwork], &i__1, info); |
|
|
|
} |
|
} |
|
|
|
/* Undo scaling. */ |
|
|
|
if (iascl == 1) { |
|
slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, |
|
info); |
|
slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & |
|
minmn, info); |
|
} else if (iascl == 2) { |
|
slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, |
|
info); |
|
slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & |
|
minmn, info); |
|
} |
|
if (ibscl == 1) { |
|
slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, |
|
info); |
|
} else if (ibscl == 2) { |
|
slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, |
|
info); |
|
} |
|
|
|
L10: |
|
work[1] = (real) maxwrk; |
|
iwork[1] = liwork; |
|
return 0; |
|
|
|
/* End of SGELSD */ |
|
|
|
} /* sgelsd_ */
|
|
|