Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
4.4 KiB
145 lines
4.4 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
/* |
|
Implementation of shift layer, which adds up const values to blob. |
|
*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "../op_inf_engine.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class ShiftLayerImpl CV_FINAL : public ShiftLayer |
|
{ |
|
public: |
|
ShiftLayerImpl(const LayerParams ¶ms) |
|
{ |
|
setParamsFrom(params); |
|
CV_Assert(blobs.size() == 1); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE |
|
{ |
|
return backendId == DNN_BACKEND_DEFAULT || |
|
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const CV_OVERRIDE |
|
{ |
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
|
internals.assign(1, shape(1, total(inputs[0], 2))); |
|
return true; |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
} |
|
|
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_Assert(inputs.size() > 0); |
|
CV_Assert(blobs.size() > 0); |
|
|
|
if(inputs[0]->dims == blobs[0].dims) |
|
{ |
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
{ |
|
Mat &inpBlob = *inputs[ii]; |
|
Mat &outBlob = outputs[ii]; |
|
|
|
outBlob = inpBlob + blobs[0]; |
|
} |
|
} |
|
else |
|
{ |
|
Mat biasOnesMat = internals[0]; |
|
biasOnesMat.setTo(1); |
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
{ |
|
Mat &inpBlob = *inputs[ii]; |
|
Mat &outBlob = outputs[ii]; |
|
|
|
inpBlob.copyTo(outBlob); |
|
|
|
for (int n = 0; n < inpBlob.size[0]; n++) |
|
{ |
|
Mat dstMat(inpBlob.size[1], inpBlob.size[2] * inpBlob.size[3], |
|
outBlob.type(), outBlob.ptr(n)); |
|
gemm(blobs[0], biasOnesMat, 1, dstMat, 1, dstMat); //TODO: gemv |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
// Inference Engine has no layer just for biases. Create a linear |
|
// transformation layer with ones weights. |
|
InferenceEngine::LayerParams lp; |
|
lp.name = name; |
|
lp.type = "ScaleShift"; |
|
lp.precision = InferenceEngine::Precision::FP32; |
|
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp)); |
|
|
|
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32, |
|
{blobs[0].total()}); |
|
weights->allocate(); |
|
|
|
std::vector<float> ones(blobs[0].total(), 1); |
|
weights->set(ones); |
|
ieLayer->_weights = weights; |
|
|
|
ieLayer->_biases = wrapToInfEngineBlob(blobs[0]); |
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
|
#endif // HAVE_INF_ENGINE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE |
|
{ |
|
scale = Mat(); |
|
shift = blobs[0]; |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
|
{ |
|
(void)outputs; // suppress unused variable warning |
|
long flops = 0; |
|
|
|
for(int i= 0; i < inputs.size(); i++) |
|
{ |
|
flops += total(inputs[i]); |
|
} |
|
|
|
return flops; |
|
} |
|
}; |
|
|
|
Ptr<ShiftLayer> ShiftLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ShiftLayer>(new ShiftLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|