mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
292 lines
11 KiB
292 lines
11 KiB
Video Analysis |
|
============== |
|
|
|
.. highlight:: cpp |
|
|
|
|
|
gpu::BroxOpticalFlow |
|
-------------------- |
|
.. ocv:class:: gpu::BroxOpticalFlow |
|
|
|
Class computing the optical flow for two images using Brox et al Optical Flow algorithm ([Brox2004]_). :: |
|
|
|
class BroxOpticalFlow |
|
{ |
|
public: |
|
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_); |
|
|
|
//! Compute optical flow |
|
//! frame0 - source frame (supports only CV_32FC1 type) |
|
//! frame1 - frame to track (with the same size and type as frame0) |
|
//! u - flow horizontal component (along x axis) |
|
//! v - flow vertical component (along y axis) |
|
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null()); |
|
|
|
//! flow smoothness |
|
float alpha; |
|
|
|
//! gradient constancy importance |
|
float gamma; |
|
|
|
//! pyramid scale factor |
|
float scale_factor; |
|
|
|
//! number of lagged non-linearity iterations (inner loop) |
|
int inner_iterations; |
|
|
|
//! number of warping iterations (number of pyramid levels) |
|
int outer_iterations; |
|
|
|
//! number of linear system solver iterations |
|
int solver_iterations; |
|
|
|
GpuMat buf; |
|
}; |
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU |
|
------------------------------------ |
|
.. ocv:class:: gpu::GoodFeaturesToTrackDetector_GPU |
|
|
|
Class used for strong corners detection on an image. :: |
|
|
|
class GoodFeaturesToTrackDetector_GPU |
|
{ |
|
public: |
|
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners_ = 1000, double qualityLevel_ = 0.01, double minDistance_ = 0.0, |
|
int blockSize_ = 3, bool useHarrisDetector_ = false, double harrisK_ = 0.04); |
|
|
|
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat()); |
|
|
|
int maxCorners; |
|
double qualityLevel; |
|
double minDistance; |
|
|
|
int blockSize; |
|
bool useHarrisDetector; |
|
double harrisK; |
|
|
|
void releaseMemory(); |
|
}; |
|
|
|
The class finds the most prominent corners in the image. |
|
|
|
.. seealso:: :ocv:func:`goodFeaturesToTrack` |
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU |
|
--------------------------------------------------------------------- |
|
Constructor. |
|
|
|
.. ocv:function:: gpu::GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04) |
|
|
|
:param maxCorners: Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned. |
|
|
|
:param qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see :ocv:func:`gpu::cornerMinEigenVal` ) or the Harris function response (see :ocv:func:`gpu::cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected. |
|
|
|
:param minDistance: Minimum possible Euclidean distance between the returned corners. |
|
|
|
:param blockSize: Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See :ocv:func:`cornerEigenValsAndVecs` . |
|
|
|
:param useHarrisDetector: Parameter indicating whether to use a Harris detector (see :ocv:func:`gpu::cornerHarris`) or :ocv:func:`gpu::cornerMinEigenVal`. |
|
|
|
:param harrisK: Free parameter of the Harris detector. |
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU::operator () |
|
------------------------------------------------- |
|
Finds the most prominent corners in the image. |
|
|
|
.. ocv:function:: void gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat()) |
|
|
|
:param image: Input 8-bit, single-channel image. |
|
|
|
:param corners: Output vector of detected corners (it will be one row matrix with CV_32FC2 type). |
|
|
|
:param mask: Optional region of interest. If the image is not empty (it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it specifies the region in which the corners are detected. |
|
|
|
.. seealso:: :ocv:func:`goodFeaturesToTrack` |
|
|
|
|
|
|
|
gpu::GoodFeaturesToTrackDetector_GPU::releaseMemory |
|
--------------------------------------------------- |
|
Releases inner buffers memory. |
|
|
|
.. ocv:function:: void gpu::GoodFeaturesToTrackDetector_GPU::releaseMemory() |
|
|
|
|
|
gpu::FarnebackOpticalFlow |
|
------------------------- |
|
.. ocv:class:: gpu::FarnebackOpticalFlow |
|
|
|
Class computing a dense optical flow using the Gunnar Farneback’s algorithm. :: |
|
|
|
class CV_EXPORTS FarnebackOpticalFlow |
|
{ |
|
public: |
|
FarnebackOpticalFlow() |
|
{ |
|
numLevels = 5; |
|
pyrScale = 0.5; |
|
fastPyramids = false; |
|
winSize = 13; |
|
numIters = 10; |
|
polyN = 5; |
|
polySigma = 1.1; |
|
flags = 0; |
|
} |
|
|
|
int numLevels; |
|
double pyrScale; |
|
bool fastPyramids; |
|
int winSize; |
|
int numIters; |
|
int polyN; |
|
double polySigma; |
|
int flags; |
|
|
|
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null()); |
|
|
|
void releaseMemory(); |
|
|
|
private: |
|
/* hidden */ |
|
}; |
|
|
|
|
|
gpu::FarnebackOpticalFlow::operator () |
|
-------------------------------------- |
|
Computes a dense optical flow using the Gunnar Farneback’s algorithm. |
|
|
|
.. ocv:function:: void gpu::FarnebackOpticalFlow::operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null()) |
|
|
|
:param frame0: First 8-bit gray-scale input image |
|
:param frame1: Second 8-bit gray-scale input image |
|
:param flowx: Flow horizontal component |
|
:param flowy: Flow vertical component |
|
:param s: Stream |
|
|
|
.. seealso:: :ocv:func:`calcOpticalFlowFarneback` |
|
|
|
|
|
gpu::FarnebackOpticalFlow::releaseMemory |
|
---------------------------------------- |
|
Releases unused auxiliary memory buffers. |
|
|
|
.. ocv:function:: void gpu::FarnebackOpticalFlow::releaseMemory() |
|
|
|
|
|
gpu::PyrLKOpticalFlow |
|
--------------------- |
|
.. ocv:class:: gpu::PyrLKOpticalFlow |
|
|
|
Class used for calculating an optical flow. :: |
|
|
|
class PyrLKOpticalFlow |
|
{ |
|
public: |
|
PyrLKOpticalFlow(); |
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, |
|
GpuMat& status, GpuMat* err = 0); |
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0); |
|
|
|
Size winSize; |
|
int maxLevel; |
|
int iters; |
|
double derivLambda; |
|
bool useInitialFlow; |
|
float minEigThreshold; |
|
bool getMinEigenVals; |
|
|
|
void releaseMemory(); |
|
}; |
|
|
|
The class can calculate an optical flow for a sparse feature set or dense optical flow using the iterative Lucas-Kanade method with pyramids. |
|
|
|
.. seealso:: :ocv:func:`calcOpticalFlowPyrLK` |
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow::sparse |
|
----------------------------- |
|
Calculate an optical flow for a sparse feature set. |
|
|
|
.. ocv:function:: void gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err = 0) |
|
|
|
:param prevImg: First 8-bit input image (supports both grayscale and color images). |
|
|
|
:param nextImg: Second input image of the same size and the same type as ``prevImg`` . |
|
|
|
:param prevPts: Vector of 2D points for which the flow needs to be found. It must be one row matrix with CV_32FC2 type. |
|
|
|
:param nextPts: Output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image. When ``useInitialFlow`` is true, the vector must have the same size as in the input. |
|
|
|
:param status: Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0. |
|
|
|
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed. |
|
|
|
.. seealso:: :ocv:func:`calcOpticalFlowPyrLK` |
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow::dense |
|
----------------------------- |
|
Calculate dense optical flow. |
|
|
|
.. ocv:function:: void gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0) |
|
|
|
:param prevImg: First 8-bit grayscale input image. |
|
|
|
:param nextImg: Second input image of the same size and the same type as ``prevImg`` . |
|
|
|
:param u: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel |
|
|
|
:param v: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel |
|
|
|
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed. |
|
|
|
|
|
|
|
gpu::PyrLKOpticalFlow::releaseMemory |
|
------------------------------------ |
|
Releases inner buffers memory. |
|
|
|
.. ocv:function:: void gpu::PyrLKOpticalFlow::releaseMemory() |
|
|
|
|
|
|
|
gpu::interpolateFrames |
|
---------------------- |
|
Interpolate frames (images) using provided optical flow (displacement field). |
|
|
|
.. ocv:function:: void gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, float pos, GpuMat& newFrame, GpuMat& buf, Stream& stream = Stream::Null()) |
|
|
|
:param frame0: First frame (32-bit floating point images, single channel). |
|
|
|
:param frame1: Second frame. Must have the same type and size as ``frame0`` . |
|
|
|
:param fu: Forward horizontal displacement. |
|
|
|
:param fv: Forward vertical displacement. |
|
|
|
:param bu: Backward horizontal displacement. |
|
|
|
:param bv: Backward vertical displacement. |
|
|
|
:param pos: New frame position. |
|
|
|
:param newFrame: Output image. |
|
|
|
:param buf: Temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow, interpolated backward vertical flow. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
.. [Brox2004] T. Brox, A. Bruhn, N. Papenberg, J. Weickert. *High accuracy optical flow estimation based on a theory for warping*. ECCV 2004.
|
|
|