Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

984 lines
39 KiB

#!/usr/bin/env python
from __future__ import print_function
import os, sys, re, string, io
# the list only for debugging. The real list, used in the real OpenCV build, is specified in CMakeLists.txt
opencv_hdr_list = [
"../../core/include/opencv2/core.hpp",
"../../core/include/opencv2/core/mat.hpp",
"../../core/include/opencv2/core/ocl.hpp",
"../../flann/include/opencv2/flann/miniflann.hpp",
"../../ml/include/opencv2/ml.hpp",
"../../imgproc/include/opencv2/imgproc.hpp",
"../../calib3d/include/opencv2/calib3d.hpp",
"../../features2d/include/opencv2/features2d.hpp",
"../../video/include/opencv2/video/tracking.hpp",
"../../video/include/opencv2/video/background_segm.hpp",
"../../objdetect/include/opencv2/objdetect.hpp",
"../../imgcodecs/include/opencv2/imgcodecs.hpp",
"../../videoio/include/opencv2/videoio.hpp",
"../../highgui/include/opencv2/highgui.hpp",
]
"""
Each declaration is [funcname, return_value_type /* in C, not in Python */, <list_of_modifiers>, <list_of_arguments>, original_return_type, docstring],
where each element of <list_of_arguments> is 4-element list itself:
[argtype, argname, default_value /* or "" if none */, <list_of_modifiers>]
where the list of modifiers is yet another nested list of strings
(currently recognized are "/O" for output argument, "/S" for static (i.e. class) methods
and "/A value" for the plain C arrays with counters)
original_return_type is None if the original_return_type is the same as return_value_type
"""
class CppHeaderParser(object):
def __init__(self, generate_umat_decls=False, generate_gpumat_decls=False):
self._generate_umat_decls = generate_umat_decls
self._generate_gpumat_decls = generate_gpumat_decls
self.BLOCK_TYPE = 0
self.BLOCK_NAME = 1
self.PROCESS_FLAG = 2
self.PUBLIC_SECTION = 3
self.CLASS_DECL = 4
self.namespaces = set()
def batch_replace(self, s, pairs):
for before, after in pairs:
s = s.replace(before, after)
return s
def get_macro_arg(self, arg_str, npos):
npos2 = npos3 = arg_str.find("(", npos)
if npos2 < 0:
print("Error: no arguments for the macro at %d" % (self.lineno,))
sys.exit(-1)
balance = 1
while 1:
t, npos3 = self.find_next_token(arg_str, ['(', ')'], npos3+1)
if npos3 < 0:
print("Error: no matching ')' in the macro call at %d" % (self.lineno,))
sys.exit(-1)
if t == '(':
balance += 1
if t == ')':
balance -= 1
if balance == 0:
break
return arg_str[npos2+1:npos3].strip(), npos3
def parse_arg(self, arg_str, argno):
"""
Parses <arg_type> [arg_name]
Returns arg_type, arg_name, modlist, argno, where
modlist is the list of wrapper-related modifiers (such as "output argument", "has counter", ...)
and argno is the new index of an anonymous argument.
That is, if no arg_str is just an argument type without argument name, the argument name is set to
"arg" + str(argno), and then argno is incremented.
"""
modlist = []
# pass 0: extracts the modifiers
if "CV_OUT" in arg_str:
modlist.append("/O")
arg_str = arg_str.replace("CV_OUT", "")
if "CV_IN_OUT" in arg_str:
modlist.append("/IO")
arg_str = arg_str.replace("CV_IN_OUT", "")
isarray = False
npos = arg_str.find("CV_CARRAY")
if npos >= 0:
isarray = True
macro_arg, npos3 = self.get_macro_arg(arg_str, npos)
modlist.append("/A " + macro_arg)
arg_str = arg_str[:npos] + arg_str[npos3+1:]
npos = arg_str.find("CV_CUSTOM_CARRAY")
if npos >= 0:
isarray = True
macro_arg, npos3 = self.get_macro_arg(arg_str, npos)
modlist.append("/CA " + macro_arg)
arg_str = arg_str[:npos] + arg_str[npos3+1:]
npos = arg_str.find("const")
if npos >= 0:
modlist.append("/C")
npos = arg_str.find("&")
if npos >= 0:
modlist.append("/Ref")
arg_str = arg_str.strip()
word_start = 0
word_list = []
npos = -1
#print self.lineno, ":\t", arg_str
# pass 1: split argument type into tokens
while 1:
npos += 1
t, npos = self.find_next_token(arg_str, [" ", "&", "*", "<", ">", ","], npos)
w = arg_str[word_start:npos].strip()
if w == "operator":
word_list.append("operator " + arg_str[npos:].strip())
break
if w not in ["", "const"]:
word_list.append(w)
if t not in ["", " ", "&"]:
word_list.append(t)
if not t:
break
word_start = npos+1
npos = word_start - 1
arg_type = ""
arg_name = ""
angle_stack = []
#print self.lineno, ":\t", word_list
# pass 2: decrypt the list
wi = -1
prev_w = ""
for w in word_list:
wi += 1
if w == "*":
if prev_w == "char" and not isarray:
arg_type = arg_type[:-len("char")] + "c_string"
else:
arg_type += w
continue
elif w == "<":
arg_type += "_"
angle_stack.append(0)
elif w == "," or w == '>':
if not angle_stack:
print("Error at %d: argument contains ',' or '>' not within template arguments" % (self.lineno,))
sys.exit(-1)
if w == ",":
arg_type += "_and_"
elif w == ">":
if angle_stack[0] == 0:
print("Error at %s:%d: template has no arguments" % (self.hname, self.lineno))
sys.exit(-1)
if angle_stack[0] > 1:
arg_type += "_end_"
angle_stack[-1:] = []
elif angle_stack:
arg_type += w
angle_stack[-1] += 1
elif arg_type == "struct":
arg_type += " " + w
elif arg_type and arg_type != "~":
arg_name = " ".join(word_list[wi:])
break
else:
arg_type += w
prev_w = w
counter_str = ""
add_star = False
if ("[" in arg_name) and not ("operator" in arg_str):
#print arg_str
p1 = arg_name.find("[")
p2 = arg_name.find("]",p1+1)
if p2 < 0:
print("Error at %d: no closing ]" % (self.lineno,))
sys.exit(-1)
counter_str = arg_name[p1+1:p2].strip()
if counter_str == "":
counter_str = "?"
if not isarray:
modlist.append("/A " + counter_str.strip())
arg_name = arg_name[:p1]
add_star = True
if not arg_name:
if arg_type.startswith("operator"):
arg_type, arg_name = "", arg_type
else:
arg_name = "arg" + str(argno)
argno += 1
while arg_type.endswith("_end_"):
arg_type = arg_type[:-len("_end_")]
if add_star:
arg_type += "*"
arg_type = self.batch_replace(arg_type, [("std::", ""), ("cv::", ""), ("::", "_")])
return arg_type, arg_name, modlist, argno
def parse_enum(self, decl_str):
l = decl_str
ll = l.split(",")
if ll[-1].strip() == "":
ll = ll[:-1]
prev_val = ""
prev_val_delta = -1
decl = []
for pair in ll:
pv = pair.split("=")
if len(pv) == 1:
prev_val_delta += 1
val = ""
if prev_val:
val = prev_val + "+"
val += str(prev_val_delta)
else:
prev_val_delta = 0
prev_val = val = pv[1].strip()
decl.append(["const " + self.get_dotted_name(pv[0].strip()), val, [], [], None, ""])
return decl
def parse_class_decl(self, decl_str):
"""
Parses class/struct declaration start in the form:
{class|struct} [CV_EXPORTS] <class_name> [: public <base_class1> [, ...]]
Returns class_name1, <list of base_classes>
"""
l = decl_str
modlist = []
if "CV_EXPORTS_W_MAP" in l:
l = l.replace("CV_EXPORTS_W_MAP", "")
modlist.append("/Map")
if "CV_EXPORTS_W_SIMPLE" in l:
l = l.replace("CV_EXPORTS_W_SIMPLE", "")
modlist.append("/Simple")
npos = l.find("CV_EXPORTS_AS")
if npos >= 0:
macro_arg, npos3 = self.get_macro_arg(l, npos)
modlist.append("=" + macro_arg)
l = l[:npos] + l[npos3+1:]
l = self.batch_replace(l, [("CV_EXPORTS_W", ""), ("CV_EXPORTS", ""), ("public virtual ", " "), ("public ", " "), ("::", ".")]).strip()
ll = re.split(r'\s+|\s*[,:]\s*', l)
ll = [le for le in ll if le]
classname = ll[1]
bases = ll[2:]
return classname, bases, modlist
def parse_func_decl_no_wrap(self, decl_str, static_method=False, docstring=""):
decl_str = (decl_str or "").strip()
virtual_method = False
explicit_method = False
if decl_str.startswith("explicit"):
decl_str = decl_str[len("explicit"):].lstrip()
explicit_method = True
if decl_str.startswith("virtual"):
decl_str = decl_str[len("virtual"):].lstrip()
virtual_method = True
if decl_str.startswith("static"):
decl_str = decl_str[len("static"):].lstrip()
static_method = True
fdecl = decl_str.replace("CV_OUT", "").replace("CV_IN_OUT", "")
fdecl = fdecl.strip().replace("\t", " ")
while " " in fdecl:
fdecl = fdecl.replace(" ", " ")
fname = fdecl[:fdecl.find("(")].strip()
fnpos = fname.rfind(" ")
if fnpos < 0:
fnpos = 0
fname = fname[fnpos:].strip()
rettype = fdecl[:fnpos].strip()
if rettype.endswith("operator"):
fname = ("operator " + fname).strip()
rettype = rettype[:rettype.rfind("operator")].strip()
if rettype.endswith("::"):
rpos = rettype.rfind(" ")
if rpos >= 0:
fname = rettype[rpos+1:].strip() + fname
rettype = rettype[:rpos].strip()
else:
fname = rettype + fname
rettype = ""
apos = fdecl.find("(")
if fname.endswith("operator"):
fname += " ()"
apos = fdecl.find("(", apos+1)
fname = "cv." + fname.replace("::", ".")
decl = [fname, rettype, [], [], None, docstring]
# inline constructor implementation
implmatch = re.match(r"(\(.*?\))\s*:\s*(\w+\(.*?\),?\s*)+", fdecl[apos:])
if bool(implmatch):
fdecl = fdecl[:apos] + implmatch.group(1)
args0str = fdecl[apos+1:fdecl.rfind(")")].strip()
if args0str != "" and args0str != "void":
args0str = re.sub(r"\([^)]*\)", lambda m: m.group(0).replace(',', "@comma@"), args0str)
args0 = args0str.split(",")
args = []
narg = ""
for arg in args0:
narg += arg.strip()
balance_paren = narg.count("(") - narg.count(")")
balance_angle = narg.count("<") - narg.count(">")
if balance_paren == 0 and balance_angle == 0:
args.append(narg.strip())
narg = ""
for arg in args:
dfpos = arg.find("=")
defval = ""
if dfpos >= 0:
defval = arg[dfpos+1:].strip()
else:
dfpos = arg.find("CV_DEFAULT")
if dfpos >= 0:
defval, pos3 = self.get_macro_arg(arg, dfpos)
else:
dfpos = arg.find("CV_WRAP_DEFAULT")
if dfpos >= 0:
defval, pos3 = self.get_macro_arg(arg, dfpos)
if dfpos >= 0:
defval = defval.replace("@comma@", ",")
arg = arg[:dfpos].strip()
pos = len(arg)-1
while pos >= 0 and (arg[pos] in "_[]" or arg[pos].isalpha() or arg[pos].isdigit()):
pos -= 1
if pos >= 0:
aname = arg[pos+1:].strip()
atype = arg[:pos+1].strip()
if aname.endswith("&") or aname.endswith("*") or (aname in ["int", "String", "Mat"]):
atype = (atype + " " + aname).strip()
aname = ""
else:
atype = arg
aname = ""
if aname.endswith("]"):
bidx = aname.find('[')
atype += aname[bidx:]
aname = aname[:bidx]
decl[3].append([atype, aname, defval, []])
if static_method:
decl[2].append("/S")
if virtual_method:
decl[2].append("/V")
if explicit_method:
decl[2].append("/E")
if bool(re.match(r".*\)\s*(const)?\s*=\s*0", decl_str)):
decl[2].append("/A")
if bool(re.match(r".*\)\s*const(\s*=\s*0)?", decl_str)):
decl[2].append("/C")
return decl
def parse_func_decl(self, decl_str, mat="Mat", docstring=""):
"""
Parses the function or method declaration in the form:
[([CV_EXPORTS] <rettype>) | CVAPI(rettype)]
[~]<function_name>
(<arg_type1> <arg_name1>[=<default_value1>] [, <arg_type2> <arg_name2>[=<default_value2>] ...])
[const] {; | <function_body>}
Returns the function declaration entry:
[<func name>, <return value C-type>, <list of modifiers>, <list of arguments>, <original return type>, <docstring>] (see above)
"""
if self.wrap_mode:
if not (("CV_EXPORTS_AS" in decl_str) or ("CV_EXPORTS_W" in decl_str) or ("CV_WRAP" in decl_str)):
return []
# ignore old API in the documentation check (for now)
if "CVAPI(" in decl_str and self.wrap_mode:
return []
top = self.block_stack[-1]
func_modlist = []
npos = decl_str.find("CV_EXPORTS_AS")
if npos >= 0:
arg, npos3 = self.get_macro_arg(decl_str, npos)
func_modlist.append("="+arg)
decl_str = decl_str[:npos] + decl_str[npos3+1:]
npos = decl_str.find("CV_WRAP_AS")
if npos >= 0:
arg, npos3 = self.get_macro_arg(decl_str, npos)
func_modlist.append("="+arg)
decl_str = decl_str[:npos] + decl_str[npos3+1:]
npos = decl_str.find("CV_WRAP_PHANTOM")
if npos >= 0:
decl_str, _ = self.get_macro_arg(decl_str, npos)
func_modlist.append("/phantom")
npos = decl_str.find("CV_WRAP_MAPPABLE")
if npos >= 0:
mappable, npos3 = self.get_macro_arg(decl_str, npos)
func_modlist.append("/mappable="+mappable)
classname = top[1]
return ['.'.join([classname, classname]), None, func_modlist, [], None, None]
virtual_method = False
pure_virtual_method = False
const_method = False
# filter off some common prefixes, which are meaningless for Python wrappers.
# note that we do not strip "static" prefix, which does matter;
# it means class methods, not instance methods
decl_str = self.batch_replace(decl_str, [("static inline", ""), ("inline", ""),\
("CV_EXPORTS_W", ""), ("CV_EXPORTS", ""), ("CV_CDECL", ""), ("CV_WRAP ", " "), ("CV_INLINE", ""),
("CV_DEPRECATED", ""), ("CV_DEPRECATED_EXTERNAL", "")]).strip()
if decl_str.strip().startswith('virtual'):
virtual_method = True
decl_str = decl_str.replace('virtual' , '')
end_tokens = decl_str[decl_str.rfind(')'):].split()
const_method = 'const' in end_tokens
pure_virtual_method = '=' in end_tokens and '0' in end_tokens
static_method = False
context = top[0]
if decl_str.startswith("static") and (context == "class" or context == "struct"):
decl_str = decl_str[len("static"):].lstrip()
static_method = True
args_begin = decl_str.find("(")
if decl_str.startswith("CVAPI"):
rtype_end = decl_str.find(")", args_begin+1)
if rtype_end < 0:
print("Error at %d. no terminating ) in CVAPI() macro: %s" % (self.lineno, decl_str))
sys.exit(-1)
decl_str = decl_str[args_begin+1:rtype_end] + " " + decl_str[rtype_end+1:]
args_begin = decl_str.find("(")
if args_begin < 0:
print("Error at %d: no args in '%s'" % (self.lineno, decl_str))
sys.exit(-1)
decl_start = decl_str[:args_begin].strip()
# handle operator () case
if decl_start.endswith("operator"):
args_begin = decl_str.find("(", args_begin+1)
if args_begin < 0:
print("Error at %d: no args in '%s'" % (self.lineno, decl_str))
sys.exit(-1)
decl_start = decl_str[:args_begin].strip()
# TODO: normalize all type of operators
if decl_start.endswith("()"):
decl_start = decl_start[0:-2].rstrip() + " ()"
# constructor/destructor case
if bool(re.match(r'^(\w+::)*(?P<x>\w+)::~?(?P=x)$', decl_start)):
decl_start = "void " + decl_start
rettype, funcname, modlist, argno = self.parse_arg(decl_start, -1)
# determine original return type, hack for return types with underscore
original_type = None
i = decl_start.rfind(funcname)
if i > 0:
original_type = decl_start[:i].replace("&", "").replace("const", "").strip()
if argno >= 0:
classname = top[1]
if rettype == classname or rettype == "~" + classname:
rettype, funcname = "", rettype
else:
if bool(re.match('\w+\s+\(\*\w+\)\s*\(.*\)', decl_str)):
return [] # function typedef
elif bool(re.match('\w+\s+\(\w+::\*\w+\)\s*\(.*\)', decl_str)):
return [] # class method typedef
elif bool(re.match('[A-Z_]+', decl_start)):
return [] # it seems to be a macro instantiation
elif "__declspec" == decl_start:
return []
elif bool(re.match(r'\w+\s+\(\*\w+\)\[\d+\]', decl_str)):
return [] # exotic - dynamic 2d array
else:
#print rettype, funcname, modlist, argno
print("Error at %s:%d the function/method name is missing: '%s'" % (self.hname, self.lineno, decl_start))
sys.exit(-1)
if self.wrap_mode and (("::" in funcname) or funcname.startswith("~")):
# if there is :: in function name (and this is in the header file),
# it means, this is inline implementation of a class method.
# Thus the function has been already declared within the class and we skip this repeated
# declaration.
# Also, skip the destructors, as they are always wrapped
return []
funcname = self.get_dotted_name(funcname)
if not self.wrap_mode:
decl = self.parse_func_decl_no_wrap(decl_str, static_method, docstring)
decl[0] = funcname
return decl
arg_start = args_begin+1
npos = arg_start-1
balance = 1
angle_balance = 0
# scan the argument list; handle nested parentheses
args_decls = []
args = []
argno = 1
while balance > 0:
npos += 1
t, npos = self.find_next_token(decl_str, ["(", ")", ",", "<", ">"], npos)
if not t:
print("Error: no closing ')' at %d" % (self.lineno,))
sys.exit(-1)
if t == "<":
angle_balance += 1
if t == ">":
angle_balance -= 1
if t == "(":
balance += 1
if t == ")":
balance -= 1
if (t == "," and balance == 1 and angle_balance == 0) or balance == 0:
# process next function argument
a = decl_str[arg_start:npos].strip()
#print "arg = ", a
arg_start = npos+1
if a:
eqpos = a.find("=")
defval = ""
modlist = []
if eqpos >= 0:
defval = a[eqpos+1:].strip()
else:
eqpos = a.find("CV_DEFAULT")
if eqpos >= 0:
defval, pos3 = self.get_macro_arg(a, eqpos)
else:
eqpos = a.find("CV_WRAP_DEFAULT")
if eqpos >= 0:
defval, pos3 = self.get_macro_arg(a, eqpos)
if defval == "NULL":
defval = "0"
if eqpos >= 0:
a = a[:eqpos].strip()
arg_type, arg_name, modlist, argno = self.parse_arg(a, argno)
if self.wrap_mode:
# TODO: Vectors should contain UMat, but this is not very easy to support and not very needed
vector_mat = "vector_{}".format("Mat")
vector_mat_template = "vector<{}>".format("Mat")
if arg_type == "InputArray":
arg_type = mat
elif arg_type == "InputOutputArray":
arg_type = mat
modlist.append("/IO")
elif arg_type == "OutputArray":
arg_type = mat
modlist.append("/O")
elif arg_type == "InputArrayOfArrays":
arg_type = vector_mat
elif arg_type == "InputOutputArrayOfArrays":
arg_type = vector_mat
modlist.append("/IO")
elif arg_type == "OutputArrayOfArrays":
arg_type = vector_mat
modlist.append("/O")
defval = self.batch_replace(defval, [("InputArrayOfArrays", vector_mat_template),
("InputOutputArrayOfArrays", vector_mat_template),
("OutputArrayOfArrays", vector_mat_template),
("InputArray", mat),
("InputOutputArray", mat),
("OutputArray", mat),
("noArray", arg_type)]).strip()
args.append([arg_type, arg_name, defval, modlist])
npos = arg_start-1
if static_method:
func_modlist.append("/S")
if const_method:
func_modlist.append("/C")
if virtual_method:
func_modlist.append("/V")
if pure_virtual_method:
func_modlist.append("/PV")
return [funcname, rettype, func_modlist, args, original_type, docstring]
def get_dotted_name(self, name):
"""
adds the dot-separated container class/namespace names to the bare function/class name, e.g. when we have
namespace cv {
class A {
public:
f(int);
};
}
the function will convert "A" to "cv.A" and "f" to "cv.A.f".
"""
if not self.block_stack:
return name
if name.startswith("cv."):
return name
qualified_name = (("." in name) or ("::" in name))
n = ""
for b in self.block_stack:
block_type, block_name = b[self.BLOCK_TYPE], b[self.BLOCK_NAME]
if block_type in ["file", "enum"]:
continue
if block_type in ["enum struct", "enum class"] and block_name == name:
continue
if block_type not in ["struct", "class", "namespace", "enum struct", "enum class"]:
print("Error at %d: there are non-valid entries in the current block stack %s" % (self.lineno, self.block_stack))
sys.exit(-1)
if block_name and (block_type == "namespace" or not qualified_name):
n += block_name + "."
n += name.replace("::", ".")
if n.endswith(".Algorithm"):
n = "cv.Algorithm"
return n
def parse_stmt(self, stmt, end_token, mat="Mat", docstring=""):
"""
parses the statement (ending with ';' or '}') or a block head (ending with '{')
The function calls parse_class_decl or parse_func_decl when necessary. It returns
<block_type>, <block_name>, <parse_flag>, <declaration>
where the first 3 values only make sense for blocks (i.e. code blocks, namespaces, classes, enums and such)
"""
stack_top = self.block_stack[-1]
context = stack_top[self.BLOCK_TYPE]
stmt_type = ""
if end_token == "{":
stmt_type = "block"
if context == "block":
print("Error at %d: should not call parse_stmt inside blocks" % (self.lineno,))
sys.exit(-1)
if context == "class" or context == "struct":
while 1:
colon_pos = stmt.find(":")
if colon_pos < 0:
break
w = stmt[:colon_pos].strip()
if w in ["public", "protected", "private"]:
if w == "public" or (not self.wrap_mode and w == "protected"):
stack_top[self.PUBLIC_SECTION] = True
else:
stack_top[self.PUBLIC_SECTION] = False
stmt = stmt[colon_pos+1:].strip()
break
# do not process hidden class members and template classes/functions
if not stack_top[self.PUBLIC_SECTION] or stmt.startswith("template"):
return stmt_type, "", False, None
if end_token == "{":
if not self.wrap_mode and stmt.startswith("typedef struct"):
stmt_type = "struct"
try:
classname, bases, modlist = self.parse_class_decl(stmt[len("typedef "):])
except:
print("Error at %s:%d" % (self.hname, self.lineno))
exit(1)
if classname.startswith("_Ipl"):
classname = classname[1:]
decl = [stmt_type + " " + self.get_dotted_name(classname), "", modlist, [], None, docstring]
if bases:
decl[1] = ": " + ", ".join([self.get_dotted_name(b).replace(".","::") for b in bases])
return stmt_type, classname, True, decl
if stmt.startswith("class") or stmt.startswith("struct"):
stmt_type = stmt.split()[0]
if stmt.strip() != stmt_type:
try:
classname, bases, modlist = self.parse_class_decl(stmt)
except:
print("Error at %s:%d" % (self.hname, self.lineno))
exit(1)
decl = []
if ("CV_EXPORTS_W" in stmt) or ("CV_EXPORTS_AS" in stmt) or (not self.wrap_mode):# and ("CV_EXPORTS" in stmt)):
decl = [stmt_type + " " + self.get_dotted_name(classname), "", modlist, [], None, docstring]
if bases:
decl[1] = ": " + ", ".join([self.get_dotted_name(b).replace(".","::") for b in bases])
return stmt_type, classname, True, decl
if stmt.startswith("enum") or stmt.startswith("namespace"):
stmt_list = stmt.rsplit(" ", 1)
if len(stmt_list) < 2:
stmt_list.append("<unnamed>")
return stmt_list[0], stmt_list[1], True, None
if stmt.startswith("extern") and "\"C\"" in stmt:
return "namespace", "", True, None
if end_token == "}" and context.startswith("enum"):
decl = self.parse_enum(stmt)
name = stack_top[self.BLOCK_NAME]
return context, name, False, decl
if end_token == ";" and stmt.startswith("typedef"):
# TODO: handle typedef's more intelligently
return stmt_type, "", False, None
paren_pos = stmt.find("(")
if paren_pos >= 0:
# assume it's function or method declaration,
# since we filtered off the other places where '(' can normally occur:
# - code blocks
# - function pointer typedef's
decl = self.parse_func_decl(stmt, mat=mat, docstring=docstring)
# we return parse_flag == False to prevent the parser to look inside function/method bodies
# (except for tracking the nested blocks)
return stmt_type, "", False, decl
if (context == "struct" or context == "class") and end_token == ";" and stmt:
# looks like it's member declaration; append the members to the class declaration
class_decl = stack_top[self.CLASS_DECL]
if ("CV_PROP" in stmt): # or (class_decl and ("/Map" in class_decl[2])):
var_modlist = []
if "CV_PROP_RW" in stmt:
var_modlist.append("/RW")
stmt = self.batch_replace(stmt, [("CV_PROP_RW", ""), ("CV_PROP", "")]).strip()
var_list = stmt.split(",")
var_type, var_name1, modlist, argno = self.parse_arg(var_list[0], -1)
var_list = [var_name1] + [i.strip() for i in var_list[1:]]
for v in var_list:
class_decl[3].append([var_type, v, "", var_modlist])
return stmt_type, "", False, None
# something unknown
return stmt_type, "", False, None
def find_next_token(self, s, tlist, p=0):
"""
Finds the next token from the 'tlist' in the input 's', starting from position 'p'.
Returns the first occurred token and its position, or ("", len(s)) when no token is found
"""
token = ""
tpos = len(s)
for t in tlist:
pos = s.find(t, p)
if pos < 0:
continue
if pos < tpos:
tpos = pos
token = t
return token, tpos
def parse(self, hname, wmode=True):
"""
The main method. Parses the input file.
Returns the list of declarations (that can be print using print_decls)
"""
self.hname = hname
decls = []
f = io.open(hname, 'rt', encoding='utf-8')
linelist = list(f.readlines())
f.close()
# states:
SCAN = 0 # outside of a comment or preprocessor directive
COMMENT = 1 # inside a multi-line comment
DIRECTIVE = 2 # inside a multi-line preprocessor directive
DOCSTRING = 3 # inside a multi-line docstring
state = SCAN
self.block_stack = [["file", hname, True, True, None]]
block_head = ""
docstring = ""
self.lineno = 0
self.wrap_mode = wmode
for l0 in linelist:
self.lineno += 1
#print(state, self.lineno, l0)
l = l0.strip()
if state == SCAN and l.startswith("#"):
state = DIRECTIVE
# fall through to the if state == DIRECTIVE check
if state == DIRECTIVE:
if not l.endswith("\\"):
state = SCAN
continue
if state == COMMENT:
pos = l.find("*/")
if pos < 0:
continue
l = l[pos+2:]
state = SCAN
if state == DOCSTRING:
pos = l.find("*/")
if pos < 0:
docstring += l + "\n"
continue
docstring += l[:pos] + "\n"
l = l[pos+2:]
state = SCAN
if l.startswith('CV__') or l.startswith('__CV_'): # just ignore these lines
#print('IGNORE: ' + l)
state = SCAN
continue
if state != SCAN:
print("Error at %d: invalid state = %d" % (self.lineno, state))
sys.exit(-1)
while 1:
token, pos = self.find_next_token(l, [";", "\"", "{", "}", "//", "/*"])
if not token:
block_head += " " + l
block_head = block_head.strip()
if len(block_head) > 0 and block_head[-1] == ')' and block_head.startswith('CV_ENUM_FLAGS('):
l = ''
token = ';'
else:
break
if token == "//":
block_head += " " + l[:pos]
l = ''
continue
if token == "/*":
block_head += " " + l[:pos]
end_pos = l.find("*/", pos+2)
if len(l) > pos + 2 and l[pos+2] == "*":
# '/**', it's a docstring
if end_pos < 0:
state = DOCSTRING
docstring = l[pos+3:] + "\n"
break
else:
docstring = l[pos+3:end_pos]
elif end_pos < 0:
state = COMMENT
break
l = l[end_pos+2:]
continue
if token == "\"":
pos2 = pos + 1
while 1:
t2, pos2 = self.find_next_token(l, ["\\", "\""], pos2)
if t2 == "":
print("Error at %d: no terminating '\"'" % (self.lineno,))
sys.exit(-1)
if t2 == "\"":
break
pos2 += 2
block_head += " " + l[:pos2+1]
l = l[pos2+1:]
continue
stmt = (block_head + " " + l[:pos]).strip()
stmt = " ".join(stmt.split()) # normalize the statement
#print(stmt)
stack_top = self.block_stack[-1]
if stmt.startswith("@"):
# Objective C ?
break
decl = None
if stack_top[self.PROCESS_FLAG]:
# even if stack_top[PUBLIC_SECTION] is False, we still try to process the statement,
# since it can start with "public:"
docstring = docstring.strip()
stmt_type, name, parse_flag, decl = self.parse_stmt(stmt, token, docstring=docstring)
if decl:
if stmt_type.startswith("enum"):
decls.append([stmt_type + " " + self.get_dotted_name(name), "", [], decl, None, ""])
else:
decls.append(decl)
if self._generate_gpumat_decls and "cv.cuda." in decl[0]:
# If function takes as one of arguments Mat or vector<Mat> - we want to create the
# same declaration working with GpuMat (this is important for T-Api access)
args = decl[3]
has_mat = len(list(filter(lambda x: x[0] in {"Mat", "vector_Mat"}, args))) > 0
if has_mat:
_, _, _, gpumat_decl = self.parse_stmt(stmt, token, mat="cuda::GpuMat", docstring=docstring)
decls.append(gpumat_decl)
if self._generate_umat_decls:
# If function takes as one of arguments Mat or vector<Mat> - we want to create the
# same declaration working with UMat (this is important for T-Api access)
args = decl[3]
has_mat = len(list(filter(lambda x: x[0] in {"Mat", "vector_Mat"}, args))) > 0
if has_mat:
_, _, _, umat_decl = self.parse_stmt(stmt, token, mat="UMat", docstring=docstring)
decls.append(umat_decl)
docstring = ""
if stmt_type == "namespace":
chunks = [block[1] for block in self.block_stack if block[0] == 'namespace'] + [name]
self.namespaces.add('.'.join(chunks))
else:
stmt_type, name, parse_flag = "block", "", False
if token == "{":
if stmt_type == "class":
public_section = False
else:
public_section = True
self.block_stack.append([stmt_type, name, parse_flag, public_section, decl])
if token == "}":
if not self.block_stack:
print("Error at %d: the block stack is empty" % (self.lineno,))
self.block_stack[-1:] = []
if pos+1 < len(l) and l[pos+1] == ';':
pos += 1
block_head = ""
l = l[pos+1:]
return decls
def print_decls(self, decls):
"""
Prints the list of declarations, retrieived by the parse() method
"""
for d in decls:
print(d[0], d[1], ";".join(d[2]))
# Uncomment below line to see docstrings
# print('"""\n' + d[5] + '\n"""')
for a in d[3]:
print(" ", a[0], a[1], a[2], end="")
if a[3]:
print("; ".join(a[3]))
else:
print()
if __name__ == '__main__':
parser = CppHeaderParser(generate_umat_decls=True, generate_gpumat_decls=True)
decls = []
for hname in opencv_hdr_list:
decls += parser.parse(hname)
#for hname in sys.argv[1:]:
#decls += parser.parse(hname, wmode=False)
parser.print_decls(decls)
print(len(decls))
print("namespaces:", " ".join(sorted(parser.namespaces)))