mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
438 lines
14 KiB
438 lines
14 KiB
// Copyright 2011 Google Inc. All Rights Reserved. |
|
// |
|
// This code is licensed under the same terms as WebM: |
|
// Software License Agreement: http://www.webmproject.org/license/software/ |
|
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Author: Jyrki Alakuijala (jyrki@google.com) |
|
// |
|
// Entropy encoding (Huffman) for webp lossless. |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include "./huffman_encode.h" |
|
#include "../utils/utils.h" |
|
#include "../webp/format_constants.h" |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Util function to optimize the symbol map for RLE coding |
|
|
|
// Heuristics for selecting the stride ranges to collapse. |
|
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) { |
|
return abs(a - b) < 4; |
|
} |
|
|
|
// Change the population counts in a way that the consequent |
|
// Hufmann tree compression, especially its RLE-part, give smaller output. |
|
static int OptimizeHuffmanForRle(int length, int* const counts) { |
|
uint8_t* good_for_rle; |
|
// 1) Let's make the Huffman code more compatible with rle encoding. |
|
int i; |
|
for (; length >= 0; --length) { |
|
if (length == 0) { |
|
return 1; // All zeros. |
|
} |
|
if (counts[length - 1] != 0) { |
|
// Now counts[0..length - 1] does not have trailing zeros. |
|
break; |
|
} |
|
} |
|
// 2) Let's mark all population counts that already can be encoded |
|
// with an rle code. |
|
good_for_rle = (uint8_t*)calloc(length, 1); |
|
if (good_for_rle == NULL) { |
|
return 0; |
|
} |
|
{ |
|
// Let's not spoil any of the existing good rle codes. |
|
// Mark any seq of 0's that is longer as 5 as a good_for_rle. |
|
// Mark any seq of non-0's that is longer as 7 as a good_for_rle. |
|
int symbol = counts[0]; |
|
int stride = 0; |
|
for (i = 0; i < length + 1; ++i) { |
|
if (i == length || counts[i] != symbol) { |
|
if ((symbol == 0 && stride >= 5) || |
|
(symbol != 0 && stride >= 7)) { |
|
int k; |
|
for (k = 0; k < stride; ++k) { |
|
good_for_rle[i - k - 1] = 1; |
|
} |
|
} |
|
stride = 1; |
|
if (i != length) { |
|
symbol = counts[i]; |
|
} |
|
} else { |
|
++stride; |
|
} |
|
} |
|
} |
|
// 3) Let's replace those population counts that lead to more rle codes. |
|
{ |
|
int stride = 0; |
|
int limit = counts[0]; |
|
int sum = 0; |
|
for (i = 0; i < length + 1; ++i) { |
|
if (i == length || good_for_rle[i] || |
|
(i != 0 && good_for_rle[i - 1]) || |
|
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) { |
|
if (stride >= 4 || (stride >= 3 && sum == 0)) { |
|
int k; |
|
// The stride must end, collapse what we have, if we have enough (4). |
|
int count = (sum + stride / 2) / stride; |
|
if (count < 1) { |
|
count = 1; |
|
} |
|
if (sum == 0) { |
|
// Don't make an all zeros stride to be upgraded to ones. |
|
count = 0; |
|
} |
|
for (k = 0; k < stride; ++k) { |
|
// We don't want to change value at counts[i], |
|
// that is already belonging to the next stride. Thus - 1. |
|
counts[i - k - 1] = count; |
|
} |
|
} |
|
stride = 0; |
|
sum = 0; |
|
if (i < length - 3) { |
|
// All interesting strides have a count of at least 4, |
|
// at least when non-zeros. |
|
limit = (counts[i] + counts[i + 1] + |
|
counts[i + 2] + counts[i + 3] + 2) / 4; |
|
} else if (i < length) { |
|
limit = counts[i]; |
|
} else { |
|
limit = 0; |
|
} |
|
} |
|
++stride; |
|
if (i != length) { |
|
sum += counts[i]; |
|
if (stride >= 4) { |
|
limit = (sum + stride / 2) / stride; |
|
} |
|
} |
|
} |
|
} |
|
free(good_for_rle); |
|
return 1; |
|
} |
|
|
|
typedef struct { |
|
int total_count_; |
|
int value_; |
|
int pool_index_left_; |
|
int pool_index_right_; |
|
} HuffmanTree; |
|
|
|
// A comparer function for two Huffman trees: sorts first by 'total count' |
|
// (more comes first), and then by 'value' (more comes first). |
|
static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) { |
|
const HuffmanTree* const t1 = (const HuffmanTree*)ptr1; |
|
const HuffmanTree* const t2 = (const HuffmanTree*)ptr2; |
|
if (t1->total_count_ > t2->total_count_) { |
|
return -1; |
|
} else if (t1->total_count_ < t2->total_count_) { |
|
return 1; |
|
} else { |
|
assert(t1->value_ != t2->value_); |
|
return (t1->value_ < t2->value_) ? -1 : 1; |
|
} |
|
} |
|
|
|
static void SetBitDepths(const HuffmanTree* const tree, |
|
const HuffmanTree* const pool, |
|
uint8_t* const bit_depths, int level) { |
|
if (tree->pool_index_left_ >= 0) { |
|
SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1); |
|
SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1); |
|
} else { |
|
bit_depths[tree->value_] = level; |
|
} |
|
} |
|
|
|
// Create an optimal Huffman tree. |
|
// |
|
// (data,length): population counts. |
|
// tree_limit: maximum bit depth (inclusive) of the codes. |
|
// bit_depths[]: how many bits are used for the symbol. |
|
// |
|
// Returns 0 when an error has occurred. |
|
// |
|
// The catch here is that the tree cannot be arbitrarily deep |
|
// |
|
// count_limit is the value that is to be faked as the minimum value |
|
// and this minimum value is raised until the tree matches the |
|
// maximum length requirement. |
|
// |
|
// This algorithm is not of excellent performance for very long data blocks, |
|
// especially when population counts are longer than 2**tree_limit, but |
|
// we are not planning to use this with extremely long blocks. |
|
// |
|
// See http://en.wikipedia.org/wiki/Huffman_coding |
|
static int GenerateOptimalTree(const int* const histogram, int histogram_size, |
|
int tree_depth_limit, |
|
uint8_t* const bit_depths) { |
|
int count_min; |
|
HuffmanTree* tree_pool; |
|
HuffmanTree* tree; |
|
int tree_size_orig = 0; |
|
int i; |
|
|
|
for (i = 0; i < histogram_size; ++i) { |
|
if (histogram[i] != 0) { |
|
++tree_size_orig; |
|
} |
|
} |
|
|
|
if (tree_size_orig == 0) { // pretty optimal already! |
|
return 1; |
|
} |
|
|
|
// 3 * tree_size is enough to cover all the nodes representing a |
|
// population and all the inserted nodes combining two existing nodes. |
|
// The tree pool needs 2 * (tree_size_orig - 1) entities, and the |
|
// tree needs exactly tree_size_orig entities. |
|
tree = (HuffmanTree*)WebPSafeMalloc(3ULL * tree_size_orig, sizeof(*tree)); |
|
if (tree == NULL) return 0; |
|
tree_pool = tree + tree_size_orig; |
|
|
|
// For block sizes with less than 64k symbols we never need to do a |
|
// second iteration of this loop. |
|
// If we actually start running inside this loop a lot, we would perhaps |
|
// be better off with the Katajainen algorithm. |
|
assert(tree_size_orig <= (1 << (tree_depth_limit - 1))); |
|
for (count_min = 1; ; count_min *= 2) { |
|
int tree_size = tree_size_orig; |
|
// We need to pack the Huffman tree in tree_depth_limit bits. |
|
// So, we try by faking histogram entries to be at least 'count_min'. |
|
int idx = 0; |
|
int j; |
|
for (j = 0; j < histogram_size; ++j) { |
|
if (histogram[j] != 0) { |
|
const int count = |
|
(histogram[j] < count_min) ? count_min : histogram[j]; |
|
tree[idx].total_count_ = count; |
|
tree[idx].value_ = j; |
|
tree[idx].pool_index_left_ = -1; |
|
tree[idx].pool_index_right_ = -1; |
|
++idx; |
|
} |
|
} |
|
|
|
// Build the Huffman tree. |
|
qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees); |
|
|
|
if (tree_size > 1) { // Normal case. |
|
int tree_pool_size = 0; |
|
while (tree_size > 1) { // Finish when we have only one root. |
|
int count; |
|
tree_pool[tree_pool_size++] = tree[tree_size - 1]; |
|
tree_pool[tree_pool_size++] = tree[tree_size - 2]; |
|
count = tree_pool[tree_pool_size - 1].total_count_ + |
|
tree_pool[tree_pool_size - 2].total_count_; |
|
tree_size -= 2; |
|
{ |
|
// Search for the insertion point. |
|
int k; |
|
for (k = 0; k < tree_size; ++k) { |
|
if (tree[k].total_count_ <= count) { |
|
break; |
|
} |
|
} |
|
memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree)); |
|
tree[k].total_count_ = count; |
|
tree[k].value_ = -1; |
|
|
|
tree[k].pool_index_left_ = tree_pool_size - 1; |
|
tree[k].pool_index_right_ = tree_pool_size - 2; |
|
tree_size = tree_size + 1; |
|
} |
|
} |
|
SetBitDepths(&tree[0], tree_pool, bit_depths, 0); |
|
} else if (tree_size == 1) { // Trivial case: only one element. |
|
bit_depths[tree[0].value_] = 1; |
|
} |
|
|
|
{ |
|
// Test if this Huffman tree satisfies our 'tree_depth_limit' criteria. |
|
int max_depth = bit_depths[0]; |
|
for (j = 1; j < histogram_size; ++j) { |
|
if (max_depth < bit_depths[j]) { |
|
max_depth = bit_depths[j]; |
|
} |
|
} |
|
if (max_depth <= tree_depth_limit) { |
|
break; |
|
} |
|
} |
|
} |
|
free(tree); |
|
return 1; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Coding of the Huffman tree values |
|
|
|
static HuffmanTreeToken* CodeRepeatedValues(int repetitions, |
|
HuffmanTreeToken* tokens, |
|
int value, int prev_value) { |
|
assert(value <= MAX_ALLOWED_CODE_LENGTH); |
|
if (value != prev_value) { |
|
tokens->code = value; |
|
tokens->extra_bits = 0; |
|
++tokens; |
|
--repetitions; |
|
} |
|
while (repetitions >= 1) { |
|
if (repetitions < 3) { |
|
int i; |
|
for (i = 0; i < repetitions; ++i) { |
|
tokens->code = value; |
|
tokens->extra_bits = 0; |
|
++tokens; |
|
} |
|
break; |
|
} else if (repetitions < 7) { |
|
tokens->code = 16; |
|
tokens->extra_bits = repetitions - 3; |
|
++tokens; |
|
break; |
|
} else { |
|
tokens->code = 16; |
|
tokens->extra_bits = 3; |
|
++tokens; |
|
repetitions -= 6; |
|
} |
|
} |
|
return tokens; |
|
} |
|
|
|
static HuffmanTreeToken* CodeRepeatedZeros(int repetitions, |
|
HuffmanTreeToken* tokens) { |
|
while (repetitions >= 1) { |
|
if (repetitions < 3) { |
|
int i; |
|
for (i = 0; i < repetitions; ++i) { |
|
tokens->code = 0; // 0-value |
|
tokens->extra_bits = 0; |
|
++tokens; |
|
} |
|
break; |
|
} else if (repetitions < 11) { |
|
tokens->code = 17; |
|
tokens->extra_bits = repetitions - 3; |
|
++tokens; |
|
break; |
|
} else if (repetitions < 139) { |
|
tokens->code = 18; |
|
tokens->extra_bits = repetitions - 11; |
|
++tokens; |
|
break; |
|
} else { |
|
tokens->code = 18; |
|
tokens->extra_bits = 0x7f; // 138 repeated 0s |
|
++tokens; |
|
repetitions -= 138; |
|
} |
|
} |
|
return tokens; |
|
} |
|
|
|
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree, |
|
HuffmanTreeToken* tokens, int max_tokens) { |
|
HuffmanTreeToken* const starting_token = tokens; |
|
HuffmanTreeToken* const ending_token = tokens + max_tokens; |
|
const int depth_size = tree->num_symbols; |
|
int prev_value = 8; // 8 is the initial value for rle. |
|
int i = 0; |
|
assert(tokens != NULL); |
|
while (i < depth_size) { |
|
const int value = tree->code_lengths[i]; |
|
int k = i + 1; |
|
int runs; |
|
while (k < depth_size && tree->code_lengths[k] == value) ++k; |
|
runs = k - i; |
|
if (value == 0) { |
|
tokens = CodeRepeatedZeros(runs, tokens); |
|
} else { |
|
tokens = CodeRepeatedValues(runs, tokens, value, prev_value); |
|
prev_value = value; |
|
} |
|
i += runs; |
|
assert(tokens <= ending_token); |
|
} |
|
(void)ending_token; // suppress 'unused variable' warning |
|
return (int)(tokens - starting_token); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
// Pre-reversed 4-bit values. |
|
static const uint8_t kReversedBits[16] = { |
|
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
|
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
|
}; |
|
|
|
static uint32_t ReverseBits(int num_bits, uint32_t bits) { |
|
uint32_t retval = 0; |
|
int i = 0; |
|
while (i < num_bits) { |
|
i += 4; |
|
retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i); |
|
bits >>= 4; |
|
} |
|
retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits); |
|
return retval; |
|
} |
|
|
|
// Get the actual bit values for a tree of bit depths. |
|
static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) { |
|
// 0 bit-depth means that the symbol does not exist. |
|
int i; |
|
int len; |
|
uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1]; |
|
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
|
|
|
assert(tree != NULL); |
|
len = tree->num_symbols; |
|
for (i = 0; i < len; ++i) { |
|
const int code_length = tree->code_lengths[i]; |
|
assert(code_length <= MAX_ALLOWED_CODE_LENGTH); |
|
++depth_count[code_length]; |
|
} |
|
depth_count[0] = 0; // ignore unused symbol |
|
next_code[0] = 0; |
|
{ |
|
uint32_t code = 0; |
|
for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) { |
|
code = (code + depth_count[i - 1]) << 1; |
|
next_code[i] = code; |
|
} |
|
} |
|
for (i = 0; i < len; ++i) { |
|
const int code_length = tree->code_lengths[i]; |
|
tree->codes[i] = ReverseBits(code_length, next_code[code_length]++); |
|
} |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Main entry point |
|
|
|
int VP8LCreateHuffmanTree(int* const histogram, int tree_depth_limit, |
|
HuffmanTreeCode* const tree) { |
|
const int num_symbols = tree->num_symbols; |
|
if (!OptimizeHuffmanForRle(num_symbols, histogram)) { |
|
return 0; |
|
} |
|
if (!GenerateOptimalTree(histogram, num_symbols, |
|
tree_depth_limit, tree->code_lengths)) { |
|
return 0; |
|
} |
|
// Create the actual bit codes for the bit lengths. |
|
ConvertBitDepthsToSymbols(tree); |
|
return 1; |
|
}
|
|
|