Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

282 lines
9.6 KiB

// Copyright 2010 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// inline YUV<->RGB conversion function
//
// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
// More information at: http://en.wikipedia.org/wiki/YCbCr
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
// We use 16bit fixed point operations for RGB->YUV conversion.
//
// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
// R = 1.164 * (Y-16) + 1.596 * (V-128)
// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
// B = 1.164 * (Y-16) + 2.018 * (U-128)
// where Y is in the [16,235] range, and U/V in the [16,240] range.
// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
// So in this case the formulae should be read as:
// R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
// G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
// B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
// once factorized. Here too, 16bit fixed precision is used.
//
// Author: Skal (pascal.massimino@gmail.com)
#ifndef WEBP_DSP_YUV_H_
#define WEBP_DSP_YUV_H_
#include "../dec/decode_vp8.h"
// Define the following to use the LUT-based code:
#define WEBP_YUV_USE_TABLE
#if defined(WEBP_EXPERIMENTAL_FEATURES)
// Do NOT activate this feature for real compression. This is only experimental!
// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
// This colorspace is close to Rec.601's Y'CbCr model with the notable
// difference of allowing larger range for luma/chroma.
// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
// #define USE_YUVj
#endif
//------------------------------------------------------------------------------
// YUV -> RGB conversion
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
enum { YUV_FIX = 16, // fixed-point precision
YUV_HALF = 1 << (YUV_FIX - 1),
YUV_MASK = (256 << YUV_FIX) - 1,
YUV_RANGE_MIN = -227, // min value of r/g/b output
YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output
};
#ifdef WEBP_YUV_USE_TABLE
extern int16_t VP8kVToR[256], VP8kUToB[256];
extern int32_t VP8kVToG[256], VP8kUToG[256];
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgb) {
const int r_off = VP8kVToR[v];
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
const int b_off = VP8kUToB[u];
rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
}
static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const bgr) {
const int r_off = VP8kVToR[v];
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
const int b_off = VP8kUToB[u];
bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
}
static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgb) {
const int r_off = VP8kVToR[v];
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
const int b_off = VP8kUToB[u];
const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
(VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
(VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
#ifdef WEBP_SWAP_16BIT_CSP
rgb[0] = gb;
rgb[1] = rg;
#else
rgb[0] = rg;
rgb[1] = gb;
#endif
}
static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const argb) {
const int r_off = VP8kVToR[v];
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
const int b_off = VP8kUToB[u];
const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
#ifdef WEBP_SWAP_16BIT_CSP
argb[0] = ba;
argb[1] = rg;
#else
argb[0] = rg;
argb[1] = ba;
#endif
}
#else // Table-free version (slower on x86)
// These constants are 16b fixed-point version of ITU-R BT.601 constants
#define kYScale 76309 // 1.164 = 255 / 219
#define kVToR 104597 // 1.596 = 255 / 112 * 0.701
#define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
#define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
#define kUToB 132201 // 2.018 = 255 / 112 * 0.886
#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF)
#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF)
#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF)
static WEBP_INLINE uint8_t VP8Clip8(int v) {
return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX)
: (v < 0) ? 0u : 255u;
}
static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits
return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N)))
: (v < 0) ? 0u : (255u >> (8 - N));
}
static WEBP_INLINE int VP8YUVToR(int y, int v) {
return kYScale * y + kVToR * v + kRCst;
}
static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
return kYScale * y - kUToG * u - kVToG * v + kGCst;
}
static WEBP_INLINE int VP8YUVToB(int y, int u) {
return kYScale * y + kUToB * u + kBCst;
}
static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgb) {
rgb[0] = VP8Clip8(VP8YUVToR(y, v));
rgb[1] = VP8Clip8(VP8YUVToG(y, u, v));
rgb[2] = VP8Clip8(VP8YUVToB(y, u));
}
static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const bgr) {
bgr[0] = VP8Clip8(VP8YUVToB(y, u));
bgr[1] = VP8Clip8(VP8YUVToG(y, u, v));
bgr[2] = VP8Clip8(VP8YUVToR(y, v));
}
static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgb) {
const int r = VP8Clip8(VP8YUVToR(y, u));
const int g = VP8ClipN(VP8YUVToG(y, u, v), 6);
const int b = VP8ClipN(VP8YUVToB(y, v), 5);
const uint8_t rg = (r & 0xf8) | (g >> 3);
const uint8_t gb = (g << 5) | b;
#ifdef WEBP_SWAP_16BIT_CSP
rgb[0] = gb;
rgb[1] = rg;
#else
rgb[0] = rg;
rgb[1] = gb;
#endif
}
static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const argb) {
const int r = VP8Clip8(VP8YUVToR(y, u));
const int g = VP8ClipN(VP8YUVToG(y, u, v), 4);
const int b = VP8Clip8(VP8YUVToB(y, v));
const uint8_t rg = (r & 0xf0) | g;
const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits
#ifdef WEBP_SWAP_16BIT_CSP
argb[0] = ba;
argb[1] = rg;
#else
argb[0] = rg;
argb[1] = ba;
#endif
}
#endif // WEBP_YUV_USE_TABLE
static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const argb) {
argb[0] = 0xff;
VP8YuvToRgb(y, u, v, argb + 1);
}
static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const bgra) {
VP8YuvToBgr(y, u, v, bgra);
bgra[3] = 0xff;
}
static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgba) {
VP8YuvToRgb(y, u, v, rgba);
rgba[3] = 0xff;
}
// Must be called before everything, to initialize the tables.
void VP8YUVInit(void);
//------------------------------------------------------------------------------
// RGB -> YUV conversion
static WEBP_INLINE int VP8ClipUV(int v) {
v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
}
#ifndef USE_YUVj
static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
const int luma = 16839 * r + 33059 * g + 6420 * b;
return (luma + kRound) >> YUV_FIX; // no need to clip
}
static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
const int u = -9719 * r - 19081 * g + 28800 * b;
return VP8ClipUV(u);
}
static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
const int v = +28800 * r - 24116 * g - 4684 * b;
return VP8ClipUV(v);
}
#else
// This JPEG-YUV colorspace, only for comparison!
// These are also 16-bit precision coefficients from Rec.601, but with full
// [0..255] output range.
static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
const int kRound = (1 << (YUV_FIX - 1));
const int luma = 19595 * r + 38470 * g + 7471 * b;
return (luma + kRound) >> YUV_FIX; // no need to clip
}
static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
const int u = -11058 * r - 21710 * g + 32768 * b;
return VP8ClipUV(u);
}
static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
const int v = 32768 * r - 27439 * g - 5329 * b;
return VP8ClipUV(v);
}
#endif // USE_YUVj
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif /* WEBP_DSP_YUV_H_ */