mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
5.0 KiB
128 lines
5.0 KiB
// demo.cpp |
|
// |
|
// Here is an example on how to use the descriptor presented in the following paper: |
|
// A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, 2012. |
|
// CVPR 2012 Open Source Award winner |
|
// |
|
// Copyright (C) 2011-2012 Signal processing laboratory 2, EPFL, |
|
// Kirell Benzi (kirell.benzi@epfl.ch), |
|
// Raphael Ortiz (raphael.ortiz@a3.epfl.ch), |
|
// Alexandre Alahi (alexandre.alahi@epfl.ch) |
|
// and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch) |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
|
|
#include <iostream> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/features2d/features2d.hpp> |
|
#include <opencv2/nonfree/features2d.hpp> |
|
#include <opencv2/legacy/legacy.hpp> |
|
|
|
using namespace cv; |
|
|
|
static void help( char** argv ) |
|
{ |
|
std::cout << "\nUsage: " << argv[0] << " [path/to/image1] [path/to/image2] \n" |
|
<< "This is an example on how to use the keypoint descriptor presented in the following paper: \n" |
|
<< "A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. \n" |
|
<< "In IEEE Conference on Computer Vision and Pattern Recognition, 2012. CVPR 2012 Open Source Award winner \n" |
|
<< std::endl; |
|
} |
|
|
|
int main( int argc, char** argv ) { |
|
// check http://docs.opencv.org/doc/tutorials/features2d/table_of_content_features2d/table_of_content_features2d.html |
|
// for OpenCV general detection/matching framework details |
|
|
|
if( argc != 3 ) { |
|
help(argv); |
|
return -1; |
|
} |
|
|
|
// Load images |
|
Mat imgA = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
|
if( !imgA.data ) { |
|
std::cout<< " --(!) Error reading image " << argv[1] << std::endl; |
|
return -1; |
|
} |
|
|
|
Mat imgB = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
|
if( !imgB.data ) { |
|
std::cout << " --(!) Error reading image " << argv[2] << std::endl; |
|
return -1; |
|
} |
|
|
|
std::vector<KeyPoint> keypointsA, keypointsB; |
|
Mat descriptorsA, descriptorsB; |
|
std::vector<DMatch> matches; |
|
|
|
// DETECTION |
|
// Any openCV detector such as |
|
SurfFeatureDetector detector(2000,4); |
|
|
|
// DESCRIPTOR |
|
// Our proposed FREAK descriptor |
|
// (rotation invariance, scale invariance, pattern radius corresponding to SMALLEST_KP_SIZE, |
|
// number of octaves, optional vector containing the selected pairs) |
|
// FREAK extractor(true, true, 22, 4, std::vector<int>()); |
|
FREAK extractor; |
|
|
|
// MATCHER |
|
// The standard Hamming distance can be used such as |
|
// BruteForceMatcher<Hamming> matcher; |
|
// or the proposed cascade of hamming distance using SSSE3 |
|
BruteForceMatcher<Hamming> matcher; |
|
|
|
// detect |
|
double t = (double)getTickCount(); |
|
detector.detect( imgA, keypointsA ); |
|
detector.detect( imgB, keypointsB ); |
|
t = ((double)getTickCount() - t)/getTickFrequency(); |
|
std::cout << "detection time [s]: " << t/1.0 << std::endl; |
|
|
|
// extract |
|
t = (double)getTickCount(); |
|
extractor.compute( imgA, keypointsA, descriptorsA ); |
|
extractor.compute( imgB, keypointsB, descriptorsB ); |
|
t = ((double)getTickCount() - t)/getTickFrequency(); |
|
std::cout << "extraction time [s]: " << t << std::endl; |
|
|
|
// match |
|
t = (double)getTickCount(); |
|
matcher.match(descriptorsA, descriptorsB, matches); |
|
t = ((double)getTickCount() - t)/getTickFrequency(); |
|
std::cout << "matching time [s]: " << t << std::endl; |
|
|
|
// Draw matches |
|
Mat imgMatch; |
|
drawMatches(imgA, keypointsA, imgB, keypointsB, matches, imgMatch); |
|
|
|
namedWindow("matches", CV_WINDOW_KEEPRATIO); |
|
imshow("matches", imgMatch); |
|
waitKey(0); |
|
}
|
|
|