mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
11 KiB
318 lines
11 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_INDEX_TESTING_H_ |
|
#define OPENCV_FLANN_INDEX_TESTING_H_ |
|
|
|
#include <cstring> |
|
#include <cassert> |
|
#include <cmath> |
|
|
|
#include "matrix.h" |
|
#include "nn_index.h" |
|
#include "result_set.h" |
|
#include "logger.h" |
|
#include "timer.h" |
|
|
|
|
|
namespace cvflann |
|
{ |
|
|
|
inline int countCorrectMatches(int* neighbors, int* groundTruth, int n) |
|
{ |
|
int count = 0; |
|
for (int i=0; i<n; ++i) { |
|
for (int k=0; k<n; ++k) { |
|
if (neighbors[i]==groundTruth[k]) { |
|
count++; |
|
break; |
|
} |
|
} |
|
} |
|
return count; |
|
} |
|
|
|
|
|
template <typename Distance> |
|
typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target, |
|
int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) |
|
{ |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
DistanceType ret = 0; |
|
for (int i=0; i<n; ++i) { |
|
DistanceType den = distance(inputData[groundTruth[i]], target, veclen); |
|
DistanceType num = distance(inputData[neighbors[i]], target, veclen); |
|
|
|
if ((den==0)&&(num==0)) { |
|
ret += 1; |
|
} |
|
else { |
|
ret += num/den; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
template <typename Distance> |
|
float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, |
|
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks, |
|
float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) |
|
{ |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
if (matches.cols<size_t(nn)) { |
|
Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn); |
|
|
|
throw FLANNException("Ground truth is not computed for as many neighbors as requested"); |
|
} |
|
|
|
KNNResultSet<DistanceType> resultSet(nn+skipMatches); |
|
SearchParams searchParams(checks); |
|
|
|
std::vector<int> indices(nn+skipMatches); |
|
std::vector<DistanceType> dists(nn+skipMatches); |
|
int* neighbors = &indices[skipMatches]; |
|
|
|
int correct = 0; |
|
DistanceType distR = 0; |
|
StartStopTimer t; |
|
int repeats = 0; |
|
while (t.value<0.2) { |
|
repeats++; |
|
t.start(); |
|
correct = 0; |
|
distR = 0; |
|
for (size_t i = 0; i < testData.rows; i++) { |
|
resultSet.init(&indices[0], &dists[0]); |
|
index.findNeighbors(resultSet, testData[i], searchParams); |
|
|
|
correct += countCorrectMatches(neighbors,matches[i], nn); |
|
distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance); |
|
} |
|
t.stop(); |
|
} |
|
time = float(t.value/repeats); |
|
|
|
float precicion = (float)correct/(nn*testData.rows); |
|
|
|
dist = distR/(testData.rows*nn); |
|
|
|
Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n", |
|
checks, precicion, time, 1000.0 * time / testData.rows, dist); |
|
|
|
return precicion; |
|
} |
|
|
|
|
|
template <typename Distance> |
|
float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, |
|
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, |
|
int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) |
|
{ |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); |
|
Logger::info("---------------------------------------------------------\n"); |
|
|
|
float time = 0; |
|
DistanceType dist = 0; |
|
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); |
|
|
|
return time; |
|
} |
|
|
|
template <typename Distance> |
|
float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, |
|
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, |
|
float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) |
|
{ |
|
typedef typename Distance::ResultType DistanceType; |
|
const float SEARCH_EPS = 0.001f; |
|
|
|
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); |
|
Logger::info("---------------------------------------------------------\n"); |
|
|
|
int c2 = 1; |
|
float p2; |
|
int c1 = 1; |
|
//float p1; |
|
float time; |
|
DistanceType dist; |
|
|
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); |
|
|
|
if (p2>precision) { |
|
Logger::info("Got as close as I can\n"); |
|
checks = c2; |
|
return time; |
|
} |
|
|
|
while (p2<precision) { |
|
c1 = c2; |
|
//p1 = p2; |
|
c2 *=2; |
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); |
|
} |
|
|
|
int cx; |
|
float realPrecision; |
|
if (fabs(p2-precision)>SEARCH_EPS) { |
|
Logger::info("Start linear estimation\n"); |
|
// after we got to values in the vecinity of the desired precision |
|
// use linear approximation get a better estimation |
|
|
|
cx = (c1+c2)/2; |
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); |
|
while (fabs(realPrecision-precision)>SEARCH_EPS) { |
|
|
|
if (realPrecision<precision) { |
|
c1 = cx; |
|
} |
|
else { |
|
c2 = cx; |
|
} |
|
cx = (c1+c2)/2; |
|
if (cx==c1) { |
|
Logger::info("Got as close as I can\n"); |
|
break; |
|
} |
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); |
|
} |
|
|
|
c2 = cx; |
|
p2 = realPrecision; |
|
|
|
} |
|
else { |
|
Logger::info("No need for linear estimation\n"); |
|
cx = c2; |
|
realPrecision = p2; |
|
} |
|
|
|
checks = cx; |
|
return time; |
|
} |
|
|
|
|
|
template <typename Distance> |
|
void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, |
|
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, |
|
float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) |
|
{ |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
const float SEARCH_EPS = 0.001; |
|
|
|
// make sure precisions array is sorted |
|
std::sort(precisions, precisions+precisions_length); |
|
|
|
int pindex = 0; |
|
float precision = precisions[pindex]; |
|
|
|
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); |
|
Logger::info("---------------------------------------------------------\n"); |
|
|
|
int c2 = 1; |
|
float p2; |
|
|
|
int c1 = 1; |
|
float p1; |
|
|
|
float time; |
|
DistanceType dist; |
|
|
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); |
|
|
|
// if precision for 1 run down the tree is already |
|
// better then some of the requested precisions, then |
|
// skip those |
|
while (precisions[pindex]<p2 && pindex<precisions_length) { |
|
pindex++; |
|
} |
|
|
|
if (pindex==precisions_length) { |
|
Logger::info("Got as close as I can\n"); |
|
return; |
|
} |
|
|
|
for (int i=pindex; i<precisions_length; ++i) { |
|
|
|
precision = precisions[i]; |
|
while (p2<precision) { |
|
c1 = c2; |
|
p1 = p2; |
|
c2 *=2; |
|
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); |
|
if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return; |
|
} |
|
|
|
int cx; |
|
float realPrecision; |
|
if (fabs(p2-precision)>SEARCH_EPS) { |
|
Logger::info("Start linear estimation\n"); |
|
// after we got to values in the vecinity of the desired precision |
|
// use linear approximation get a better estimation |
|
|
|
cx = (c1+c2)/2; |
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); |
|
while (fabs(realPrecision-precision)>SEARCH_EPS) { |
|
|
|
if (realPrecision<precision) { |
|
c1 = cx; |
|
} |
|
else { |
|
c2 = cx; |
|
} |
|
cx = (c1+c2)/2; |
|
if (cx==c1) { |
|
Logger::info("Got as close as I can\n"); |
|
break; |
|
} |
|
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); |
|
} |
|
|
|
c2 = cx; |
|
p2 = realPrecision; |
|
|
|
} |
|
else { |
|
Logger::info("No need for linear estimation\n"); |
|
cx = c2; |
|
realPrecision = p2; |
|
} |
|
|
|
} |
|
} |
|
|
|
} |
|
|
|
#endif //OPENCV_FLANN_INDEX_TESTING_H_
|
|
|