mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
7.9 KiB
279 lines
7.9 KiB
// WARNING: this sample is under construction! Use it on your own risk. |
|
#pragma warning(disable : 4100) |
|
|
|
#include "cvconfig.h" |
|
#include <iostream> |
|
#include <iomanip> |
|
#include "opencv2/contrib/contrib.hpp" |
|
#include "opencv2/objdetect/objdetect.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/gpu/gpu.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
|
|
#if !defined(HAVE_CUDA) |
|
int main(int argc, const char **argv) |
|
{ |
|
cout << "Please compile the library with CUDA support" << endl; |
|
return -1; |
|
} |
|
#else |
|
|
|
|
|
void help() |
|
{ |
|
cout << "Usage: ./cascadeclassifier <cascade_file> <image_or_video_or_cameraid>\n" |
|
"Using OpenCV version " << CV_VERSION << endl << endl; |
|
} |
|
|
|
|
|
template<class T> |
|
void convertAndResize(const T& src, T& gray, T& resized, double scale) |
|
{ |
|
if (src.channels() == 3) |
|
{ |
|
cvtColor( src, gray, CV_BGR2GRAY ); |
|
} |
|
else |
|
{ |
|
gray = src; |
|
} |
|
|
|
Size sz(cvRound(gray.cols * scale), cvRound(gray.rows * scale)); |
|
|
|
if (scale != 1) |
|
{ |
|
resize(gray, resized, sz); |
|
} |
|
else |
|
{ |
|
resized = gray; |
|
} |
|
} |
|
|
|
|
|
void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const ostringstream &ss) |
|
{ |
|
int fontFace = FONT_HERSHEY_DUPLEX; |
|
double fontScale = 0.8; |
|
int fontThickness = 2; |
|
Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0); |
|
|
|
Point org; |
|
org.x = 1; |
|
org.y = 3 * fontSize.height * (lineOffsY + 1) / 2; |
|
putText(img, ss.str(), org, fontFace, fontScale, CV_RGB(0,0,0), 5*fontThickness/2, 16); |
|
putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness, 16); |
|
} |
|
|
|
|
|
void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps) |
|
{ |
|
Scalar fontColorRed = CV_RGB(255,0,0); |
|
Scalar fontColorNV = CV_RGB(118,185,0); |
|
|
|
ostringstream ss; |
|
ss << "FPS = " << setprecision(1) << fixed << fps; |
|
matPrint(canvas, 0, fontColorRed, ss); |
|
ss.str(""); |
|
ss << "[" << canvas.cols << "x" << canvas.rows << "], " << |
|
(bGpu ? "GPU, " : "CPU, ") << |
|
(bLargestFace ? "OneFace, " : "MultiFace, ") << |
|
(bFilter ? "Filter:ON" : "Filter:OFF"); |
|
matPrint(canvas, 1, fontColorRed, ss); |
|
|
|
if (bHelp) |
|
{ |
|
matPrint(canvas, 2, fontColorNV, ostringstream("Space - switch GPU / CPU")); |
|
matPrint(canvas, 3, fontColorNV, ostringstream("M - switch OneFace / MultiFace")); |
|
matPrint(canvas, 4, fontColorNV, ostringstream("F - toggle rectangles Filter")); |
|
matPrint(canvas, 5, fontColorNV, ostringstream("H - toggle hotkeys help")); |
|
matPrint(canvas, 6, fontColorNV, ostringstream("1/Q - increase/decrease scale")); |
|
} |
|
else |
|
{ |
|
matPrint(canvas, 2, fontColorNV, ostringstream("H - toggle hotkeys help")); |
|
} |
|
} |
|
|
|
|
|
int main(int argc, const char *argv[]) |
|
{ |
|
if (argc != 3) |
|
{ |
|
return help(), -1; |
|
} |
|
|
|
if (getCudaEnabledDeviceCount() == 0) |
|
{ |
|
return cerr << "No GPU found or the library is compiled without GPU support" << endl, -1; |
|
} |
|
|
|
VideoCapture capture; |
|
|
|
string cascadeName = argv[1]; |
|
string inputName = argv[2]; |
|
|
|
CascadeClassifier_GPU cascade_gpu; |
|
if (!cascade_gpu.load(cascadeName)) |
|
{ |
|
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1; |
|
} |
|
|
|
CascadeClassifier cascade_cpu; |
|
if (!cascade_cpu.load(cascadeName)) |
|
{ |
|
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1; |
|
} |
|
|
|
Mat image = imread(inputName); |
|
|
|
if (image.empty()) |
|
{ |
|
if (!capture.open(inputName)) |
|
{ |
|
int camid = -1; |
|
istringstream iss(inputName); |
|
iss >> camid; |
|
|
|
if (!capture.open(camid)) |
|
{ |
|
cout << "Can't open source" << endl; |
|
return help(), -1; |
|
} |
|
} |
|
} |
|
|
|
namedWindow("result", 1); |
|
|
|
Mat frame, frame_cpu, gray_cpu, resized_cpu, faces_downloaded, frameDisp; |
|
vector<Rect> facesBuf_cpu; |
|
|
|
GpuMat frame_gpu, gray_gpu, resized_gpu, facesBuf_gpu; |
|
|
|
/* parameters */ |
|
bool useGPU = true; |
|
double scaleFactor = 1.0; |
|
bool findLargestObject = false; |
|
bool filterRects = true; |
|
bool helpScreen = false; |
|
|
|
int detections_num; |
|
for (;;) |
|
{ |
|
if (capture.isOpened()) |
|
{ |
|
capture >> frame; |
|
if (frame.empty()) |
|
{ |
|
break; |
|
} |
|
} |
|
|
|
(image.empty() ? frame : image).copyTo(frame_cpu); |
|
frame_gpu.upload(image.empty() ? frame : image); |
|
|
|
convertAndResize(frame_gpu, gray_gpu, resized_gpu, scaleFactor); |
|
convertAndResize(frame_cpu, gray_cpu, resized_cpu, scaleFactor); |
|
|
|
TickMeter tm; |
|
tm.start(); |
|
|
|
if (useGPU) |
|
{ |
|
cascade_gpu.visualizeInPlace = true; |
|
cascade_gpu.findLargestObject = findLargestObject; |
|
|
|
detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2, |
|
(filterRects || findLargestObject) ? 4 : 0); |
|
facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded); |
|
} |
|
else |
|
{ |
|
Size minSize = cascade_gpu.getClassifierSize(); |
|
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2, |
|
(filterRects || findLargestObject) ? 4 : 0, |
|
(findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) |
|
| CV_HAAR_SCALE_IMAGE, |
|
minSize); |
|
detections_num = (int)facesBuf_cpu.size(); |
|
} |
|
|
|
if (!useGPU && detections_num) |
|
{ |
|
for (int i = 0; i < detections_num; ++i) |
|
{ |
|
rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255)); |
|
} |
|
} |
|
|
|
if (useGPU) |
|
{ |
|
resized_gpu.download(resized_cpu); |
|
} |
|
|
|
tm.stop(); |
|
double detectionTime = tm.getTimeMilli(); |
|
double fps = 1000 / detectionTime; |
|
|
|
//print detections to console |
|
cout << setfill(' ') << setprecision(2); |
|
cout << setw(6) << fixed << fps << " FPS, " << detections_num << " det"; |
|
if ((filterRects || findLargestObject) && detections_num > 0) |
|
{ |
|
Rect *faceRects = useGPU ? faces_downloaded.ptr<Rect>() : &facesBuf_cpu[0]; |
|
for (int i = 0; i < min(detections_num, 2); ++i) |
|
{ |
|
cout << ", [" << setw(4) << faceRects[i].x |
|
<< ", " << setw(4) << faceRects[i].y |
|
<< ", " << setw(4) << faceRects[i].width |
|
<< ", " << setw(4) << faceRects[i].height << "]"; |
|
} |
|
} |
|
cout << endl; |
|
|
|
cvtColor(resized_cpu, frameDisp, CV_GRAY2BGR); |
|
displayState(frameDisp, helpScreen, useGPU, findLargestObject, filterRects, fps); |
|
imshow("result", frameDisp); |
|
|
|
int key = waitKey(5); |
|
if (key == 27) |
|
{ |
|
break; |
|
} |
|
|
|
switch ((char)key) |
|
{ |
|
case ' ': |
|
useGPU = !useGPU; |
|
break; |
|
case 'm': |
|
case 'M': |
|
findLargestObject = !findLargestObject; |
|
break; |
|
case 'f': |
|
case 'F': |
|
filterRects = !filterRects; |
|
break; |
|
case '1': |
|
scaleFactor *= 1.05; |
|
break; |
|
case 'q': |
|
case 'Q': |
|
scaleFactor /= 1.05; |
|
break; |
|
case 'h': |
|
case 'H': |
|
helpScreen = !helpScreen; |
|
break; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#endif //!defined(HAVE_CUDA)
|
|
|