mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
9.4 KiB
331 lines
9.4 KiB
#include <iostream> |
|
#include <vector> |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/core/utility.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/video.hpp> |
|
#include <opencv2/cudaoptflow.hpp> |
|
#include <opencv2/cudaimgproc.hpp> |
|
#include <opencv2/cudaarithm.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
static void download(const GpuMat& d_mat, vector<Point2f>& vec) |
|
{ |
|
vec.resize(d_mat.cols); |
|
Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]); |
|
d_mat.download(mat); |
|
} |
|
|
|
static void download(const GpuMat& d_mat, vector<uchar>& vec) |
|
{ |
|
vec.resize(d_mat.cols); |
|
Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]); |
|
d_mat.download(mat); |
|
} |
|
|
|
static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255)) |
|
{ |
|
for (size_t i = 0; i < prevPts.size(); ++i) |
|
{ |
|
if (status[i]) |
|
{ |
|
int line_thickness = 1; |
|
|
|
Point p = prevPts[i]; |
|
Point q = nextPts[i]; |
|
|
|
double angle = atan2((double) p.y - q.y, (double) p.x - q.x); |
|
|
|
double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) ); |
|
|
|
if (hypotenuse < 1.0) |
|
continue; |
|
|
|
// Here we lengthen the arrow by a factor of three. |
|
q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); |
|
q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); |
|
|
|
// Now we draw the main line of the arrow. |
|
line(frame, p, q, line_color, line_thickness); |
|
|
|
// Now draw the tips of the arrow. I do some scaling so that the |
|
// tips look proportional to the main line of the arrow. |
|
|
|
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4)); |
|
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4)); |
|
line(frame, p, q, line_color, line_thickness); |
|
|
|
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4)); |
|
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4)); |
|
line(frame, p, q, line_color, line_thickness); |
|
} |
|
} |
|
} |
|
|
|
inline bool isFlowCorrect(Point2f u) |
|
{ |
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; |
|
} |
|
|
|
static Vec3b computeColor(float fx, float fy) |
|
{ |
|
static bool first = true; |
|
|
|
// relative lengths of color transitions: |
|
// these are chosen based on perceptual similarity |
|
// (e.g. one can distinguish more shades between red and yellow |
|
// than between yellow and green) |
|
const int RY = 15; |
|
const int YG = 6; |
|
const int GC = 4; |
|
const int CB = 11; |
|
const int BM = 13; |
|
const int MR = 6; |
|
const int NCOLS = RY + YG + GC + CB + BM + MR; |
|
static Vec3i colorWheel[NCOLS]; |
|
|
|
if (first) |
|
{ |
|
int k = 0; |
|
|
|
for (int i = 0; i < RY; ++i, ++k) |
|
colorWheel[k] = Vec3i(255, 255 * i / RY, 0); |
|
|
|
for (int i = 0; i < YG; ++i, ++k) |
|
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0); |
|
|
|
for (int i = 0; i < GC; ++i, ++k) |
|
colorWheel[k] = Vec3i(0, 255, 255 * i / GC); |
|
|
|
for (int i = 0; i < CB; ++i, ++k) |
|
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255); |
|
|
|
for (int i = 0; i < BM; ++i, ++k) |
|
colorWheel[k] = Vec3i(255 * i / BM, 0, 255); |
|
|
|
for (int i = 0; i < MR; ++i, ++k) |
|
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR); |
|
|
|
first = false; |
|
} |
|
|
|
const float rad = sqrt(fx * fx + fy * fy); |
|
const float a = atan2(-fy, -fx) / (float)CV_PI; |
|
|
|
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1); |
|
const int k0 = static_cast<int>(fk); |
|
const int k1 = (k0 + 1) % NCOLS; |
|
const float f = fk - k0; |
|
|
|
Vec3b pix; |
|
|
|
for (int b = 0; b < 3; b++) |
|
{ |
|
const float col0 = colorWheel[k0][b] / 255.0f; |
|
const float col1 = colorWheel[k1][b] / 255.0f; |
|
|
|
float col = (1 - f) * col0 + f * col1; |
|
|
|
if (rad <= 1) |
|
col = 1 - rad * (1 - col); // increase saturation with radius |
|
else |
|
col *= .75; // out of range |
|
|
|
pix[2 - b] = static_cast<uchar>(255.0 * col); |
|
} |
|
|
|
return pix; |
|
} |
|
|
|
static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1) |
|
{ |
|
dst.create(flowx.size(), CV_8UC3); |
|
dst.setTo(Scalar::all(0)); |
|
|
|
// determine motion range: |
|
float maxrad = maxmotion; |
|
|
|
if (maxmotion <= 0) |
|
{ |
|
maxrad = 1; |
|
for (int y = 0; y < flowx.rows; ++y) |
|
{ |
|
for (int x = 0; x < flowx.cols; ++x) |
|
{ |
|
Point2f u(flowx(y, x), flowy(y, x)); |
|
|
|
if (!isFlowCorrect(u)) |
|
continue; |
|
|
|
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y)); |
|
} |
|
} |
|
} |
|
|
|
for (int y = 0; y < flowx.rows; ++y) |
|
{ |
|
for (int x = 0; x < flowx.cols; ++x) |
|
{ |
|
Point2f u(flowx(y, x), flowy(y, x)); |
|
|
|
if (isFlowCorrect(u)) |
|
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad); |
|
} |
|
} |
|
} |
|
|
|
static void showFlow(const char* name, const GpuMat& d_flow) |
|
{ |
|
GpuMat planes[2]; |
|
cuda::split(d_flow, planes); |
|
|
|
Mat flowx(planes[0]); |
|
Mat flowy(planes[1]); |
|
|
|
Mat out; |
|
drawOpticalFlow(flowx, flowy, out, 10); |
|
|
|
imshow(name, out); |
|
} |
|
|
|
template <typename T> inline T clamp (T x, T a, T b) |
|
{ |
|
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a)); |
|
} |
|
|
|
template <typename T> inline T mapValue(T x, T a, T b, T c, T d) |
|
{ |
|
x = clamp(x, a, b); |
|
return c + (d - c) * (x - a) / (b - a); |
|
} |
|
|
|
int main(int argc, const char* argv[]) |
|
{ |
|
const char* keys = |
|
"{ h help | | print help message }" |
|
"{ l left | ../data/pic1.png | specify left image }" |
|
"{ r right | ../data/pic2.png | specify right image }" |
|
"{ flow | sparse | specify flow type [PyrLK] }" |
|
"{ gray | | use grayscale sources [PyrLK Sparse] }" |
|
"{ win_size | 21 | specify windows size [PyrLK] }" |
|
"{ max_level | 3 | specify max level [PyrLK] }" |
|
"{ iters | 30 | specify iterations count [PyrLK] }" |
|
"{ points | 4000 | specify points count [GoodFeatureToTrack] }" |
|
"{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }"; |
|
|
|
CommandLineParser cmd(argc, argv, keys); |
|
|
|
if (cmd.has("help") || !cmd.check()) |
|
{ |
|
cmd.printMessage(); |
|
cmd.printErrors(); |
|
return 0; |
|
} |
|
|
|
string fname0 = cmd.get<string>("left"); |
|
string fname1 = cmd.get<string>("right"); |
|
|
|
if (fname0.empty() || fname1.empty()) |
|
{ |
|
cerr << "Missing input file names" << endl; |
|
return -1; |
|
} |
|
|
|
string flow_type = cmd.get<string>("flow"); |
|
bool is_sparse = true; |
|
if (flow_type == "sparse") |
|
{ |
|
is_sparse = true; |
|
} |
|
else if (flow_type == "dense") |
|
{ |
|
is_sparse = false; |
|
} |
|
else |
|
{ |
|
cerr << "please specify 'sparse' or 'dense' as flow type" << endl; |
|
return -1; |
|
} |
|
|
|
bool useGray = cmd.has("gray"); |
|
int winSize = cmd.get<int>("win_size"); |
|
int maxLevel = cmd.get<int>("max_level"); |
|
int iters = cmd.get<int>("iters"); |
|
int points = cmd.get<int>("points"); |
|
double minDist = cmd.get<double>("min_dist"); |
|
|
|
Mat frame0 = imread(fname0); |
|
Mat frame1 = imread(fname1); |
|
|
|
if (frame0.empty() || frame1.empty()) |
|
{ |
|
cout << "Can't load input images" << endl; |
|
return -1; |
|
} |
|
|
|
cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl; |
|
cout << "Points count : " << points << endl; |
|
|
|
cout << endl; |
|
|
|
Mat frame0Gray; |
|
cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY); |
|
Mat frame1Gray; |
|
cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY); |
|
|
|
// goodFeaturesToTrack |
|
GpuMat d_frame0Gray(frame0Gray); |
|
GpuMat d_prevPts; |
|
|
|
Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist); |
|
detector->detect(d_frame0Gray, d_prevPts); |
|
|
|
GpuMat d_frame0(frame0); |
|
GpuMat d_frame1(frame1); |
|
GpuMat d_frame1Gray(frame1Gray); |
|
GpuMat d_nextPts; |
|
GpuMat d_status; |
|
GpuMat d_flow(frame0.size(), CV_32FC2); |
|
|
|
if (is_sparse) |
|
{ |
|
// Sparse |
|
Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK_sparse = cuda::SparsePyrLKOpticalFlow::create( |
|
Size(winSize, winSize), maxLevel, iters); |
|
d_pyrLK_sparse->calc(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status); |
|
|
|
// Draw arrows |
|
vector<Point2f> prevPts(d_prevPts.cols); |
|
download(d_prevPts, prevPts); |
|
|
|
vector<Point2f> nextPts(d_nextPts.cols); |
|
download(d_nextPts, nextPts); |
|
|
|
vector<uchar> status(d_status.cols); |
|
download(d_status, status); |
|
|
|
namedWindow("PyrLK [Sparse]", WINDOW_NORMAL); |
|
drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0)); |
|
imshow("PyrLK [Sparse]", frame0); |
|
} |
|
else |
|
{ |
|
// Dense |
|
Ptr<cuda::DensePyrLKOpticalFlow> d_pyrLK_dense = cuda::DensePyrLKOpticalFlow::create( |
|
Size(winSize, winSize), maxLevel, iters); |
|
d_pyrLK_dense->calc(d_frame0Gray, d_frame1Gray, d_flow); |
|
|
|
// Draw flows |
|
namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL); |
|
showFlow("PyrLK [Dense] Flow Field", d_flow); |
|
} |
|
|
|
waitKey(0); |
|
|
|
return 0; |
|
} |