mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
397 lines
13 KiB
397 lines
13 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Used in accuracy and perf tests as a content of .cpp file |
|
// Note: don't use "precomp.hpp" here |
|
#include "opencv2/ts.hpp" |
|
#include "opencv2/ts/ts_perf.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencv2/core/ocl.hpp" |
|
|
|
#include "opencv2/dnn.hpp" |
|
#include "test_common.hpp" |
|
|
|
#include <opencv2/core/utils/configuration.private.hpp> |
|
#include <opencv2/core/utils/logger.hpp> |
|
|
|
namespace cv { namespace dnn { |
|
CV__DNN_EXPERIMENTAL_NS_BEGIN |
|
|
|
void PrintTo(const cv::dnn::Backend& v, std::ostream* os) |
|
{ |
|
switch (v) { |
|
case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return; |
|
case DNN_BACKEND_HALIDE: *os << "HALIDE"; return; |
|
case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return; |
|
case DNN_BACKEND_OPENCV: *os << "OCV"; return; |
|
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return; |
|
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return; |
|
default: /* do nothing */; |
|
} // don't use "default:" to emit compiler warnings |
|
*os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")"; |
|
} |
|
|
|
void PrintTo(const cv::dnn::Target& v, std::ostream* os) |
|
{ |
|
switch (v) { |
|
case DNN_TARGET_CPU: *os << "CPU"; return; |
|
case DNN_TARGET_OPENCL: *os << "OCL"; return; |
|
case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return; |
|
case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return; |
|
case DNN_TARGET_FPGA: *os << "FPGA"; return; |
|
} // don't use "default:" to emit compiler warnings |
|
*os << "DNN_TARGET_UNKNOWN(" << (int)v << ")"; |
|
} |
|
|
|
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os) |
|
{ |
|
PrintTo(get<0>(v), os); |
|
*os << "/"; |
|
PrintTo(get<1>(v), os); |
|
} |
|
|
|
CV__DNN_EXPERIMENTAL_NS_END |
|
}} // namespace |
|
|
|
|
|
|
|
namespace opencv_test { |
|
|
|
void normAssert( |
|
cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/, |
|
double l1 /*= 0.00001*/, double lInf /*= 0.0001*/) |
|
{ |
|
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); |
|
EXPECT_LE(normL1, l1) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF); |
|
|
|
double normInf = cvtest::norm(ref, test, cv::NORM_INF); |
|
EXPECT_LE(normInf, lInf) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF); |
|
} |
|
|
|
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m) |
|
{ |
|
EXPECT_EQ(m.type(), CV_32FC1); |
|
EXPECT_EQ(m.dims, 2); |
|
EXPECT_EQ(m.cols, 4); |
|
|
|
std::vector<cv::Rect2d> boxes(m.rows); |
|
for (int i = 0; i < m.rows; ++i) |
|
{ |
|
CV_Assert(m.row(i).isContinuous()); |
|
const float* data = m.ptr<float>(i); |
|
double l = data[0], t = data[1], r = data[2], b = data[3]; |
|
boxes[i] = cv::Rect2d(l, t, r - l, b - t); |
|
} |
|
return boxes; |
|
} |
|
|
|
void normAssertDetections( |
|
const std::vector<int>& refClassIds, |
|
const std::vector<float>& refScores, |
|
const std::vector<cv::Rect2d>& refBoxes, |
|
const std::vector<int>& testClassIds, |
|
const std::vector<float>& testScores, |
|
const std::vector<cv::Rect2d>& testBoxes, |
|
const char *comment /*= ""*/, double confThreshold /*= 0.0*/, |
|
double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/) |
|
{ |
|
ASSERT_FALSE(testClassIds.empty()) << "No detections"; |
|
std::vector<bool> matchedRefBoxes(refBoxes.size(), false); |
|
std::vector<double> refBoxesIoUDiff(refBoxes.size(), 1.0); |
|
for (int i = 0; i < testBoxes.size(); ++i) |
|
{ |
|
//cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl; |
|
double testScore = testScores[i]; |
|
if (testScore < confThreshold) |
|
continue; |
|
|
|
int testClassId = testClassIds[i]; |
|
const cv::Rect2d& testBox = testBoxes[i]; |
|
bool matched = false; |
|
double topIoU = 0; |
|
for (int j = 0; j < refBoxes.size() && !matched; ++j) |
|
{ |
|
if (!matchedRefBoxes[j] && testClassId == refClassIds[j] && |
|
std::abs(testScore - refScores[j]) < scores_diff) |
|
{ |
|
double interArea = (testBox & refBoxes[j]).area(); |
|
double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea); |
|
topIoU = std::max(topIoU, iou); |
|
refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou); |
|
if (1.0 - iou < boxes_iou_diff) |
|
{ |
|
matched = true; |
|
matchedRefBoxes[j] = true; |
|
} |
|
} |
|
} |
|
if (!matched) |
|
{ |
|
std::cout << cv::format("Unmatched prediction: class %d score %f box ", |
|
testClassId, testScore) << testBox << std::endl; |
|
std::cout << "Highest IoU: " << topIoU << std::endl; |
|
} |
|
EXPECT_TRUE(matched) << comment; |
|
} |
|
|
|
// Check unmatched reference detections. |
|
for (int i = 0; i < refBoxes.size(); ++i) |
|
{ |
|
if (!matchedRefBoxes[i] && refScores[i] > confThreshold) |
|
{ |
|
std::cout << cv::format("Unmatched reference: class %d score %f box ", |
|
refClassIds[i], refScores[i]) << refBoxes[i] |
|
<< " IoU diff: " << refBoxesIoUDiff[i] |
|
<< std::endl; |
|
EXPECT_LE(refScores[i], confThreshold) << comment; |
|
} |
|
} |
|
} |
|
|
|
// For SSD-based object detection networks which produce output of shape 1x1xNx7 |
|
// where N is a number of detections and an every detection is represented by |
|
// a vector [batchId, classId, confidence, left, top, right, bottom]. |
|
void normAssertDetections( |
|
cv::Mat ref, cv::Mat out, const char *comment /*= ""*/, |
|
double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/, |
|
double boxes_iou_diff /*= 1e-4*/) |
|
{ |
|
CV_Assert(ref.total() % 7 == 0); |
|
CV_Assert(out.total() % 7 == 0); |
|
ref = ref.reshape(1, ref.total() / 7); |
|
out = out.reshape(1, out.total() / 7); |
|
|
|
cv::Mat refClassIds, testClassIds; |
|
ref.col(1).convertTo(refClassIds, CV_32SC1); |
|
out.col(1).convertTo(testClassIds, CV_32SC1); |
|
std::vector<float> refScores(ref.col(2)), testScores(out.col(2)); |
|
std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7)); |
|
std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7)); |
|
normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores, |
|
testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff); |
|
} |
|
|
|
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content) |
|
{ |
|
const std::ios::openmode mode = std::ios::in | std::ios::binary; |
|
std::ifstream ifs(filename.c_str(), mode); |
|
ASSERT_TRUE(ifs.is_open()); |
|
|
|
content.clear(); |
|
|
|
ifs.seekg(0, std::ios::end); |
|
const size_t sz = ifs.tellg(); |
|
content.resize(sz); |
|
ifs.seekg(0, std::ios::beg); |
|
|
|
ifs.read((char*)content.data(), sz); |
|
ASSERT_FALSE(ifs.fail()); |
|
} |
|
|
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets( |
|
bool withInferenceEngine /*= true*/, |
|
bool withHalide /*= false*/, |
|
bool withCpuOCV /*= true*/, |
|
bool withNgraph /*= true*/ |
|
) |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
bool withVPU = validateVPUType(); |
|
#endif |
|
|
|
std::vector< tuple<Backend, Target> > targets; |
|
std::vector< Target > available; |
|
if (withHalide) |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_HALIDE); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i)); |
|
} |
|
#ifdef HAVE_INF_ENGINE |
|
if (withInferenceEngine) |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (*i == DNN_TARGET_MYRIAD && !withVPU) |
|
continue; |
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i)); |
|
} |
|
} |
|
if (withNgraph) |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (*i == DNN_TARGET_MYRIAD && !withVPU) |
|
continue; |
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i)); |
|
} |
|
|
|
} |
|
#else |
|
CV_UNUSED(withInferenceEngine); |
|
#endif |
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_OPENCV); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (!withCpuOCV && *i == DNN_TARGET_CPU) |
|
continue; |
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i)); |
|
} |
|
} |
|
if (targets.empty()) // validate at least CPU mode |
|
targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)); |
|
return testing::ValuesIn(targets); |
|
} |
|
|
|
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE() |
|
{ |
|
#ifdef HAVE_INF_ENGINE |
|
bool withVPU = validateVPUType(); |
|
|
|
std::vector< tuple<Backend, Target> > targets; |
|
std::vector< Target > available; |
|
|
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (*i == DNN_TARGET_MYRIAD && !withVPU) |
|
continue; |
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i)); |
|
} |
|
} |
|
|
|
{ |
|
available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (*i == DNN_TARGET_MYRIAD && !withVPU) |
|
continue; |
|
targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i)); |
|
} |
|
|
|
} |
|
|
|
return testing::ValuesIn(targets); |
|
#else |
|
return testing::ValuesIn(std::vector< tuple<Backend, Target> >()); |
|
#endif |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
static std::string getTestInferenceEngineVPUType() |
|
{ |
|
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", ""); |
|
return param_vpu_type; |
|
} |
|
|
|
static bool validateVPUType_() |
|
{ |
|
std::string test_vpu_type = getTestInferenceEngineVPUType(); |
|
if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled") |
|
{ |
|
return false; |
|
} |
|
|
|
std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE); |
|
bool have_vpu_target = false; |
|
for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i) |
|
{ |
|
if (*i == DNN_TARGET_MYRIAD) |
|
{ |
|
have_vpu_target = true; |
|
break; |
|
} |
|
} |
|
|
|
if (test_vpu_type.empty()) |
|
{ |
|
if (have_vpu_target) |
|
{ |
|
CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.") |
|
} |
|
} |
|
else |
|
{ |
|
if (!have_vpu_target) |
|
{ |
|
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP."); |
|
exit(1); |
|
} |
|
std::string dnn_vpu_type = getInferenceEngineVPUType(); |
|
if (dnn_vpu_type != test_vpu_type) |
|
{ |
|
CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP."); |
|
exit(1); |
|
} |
|
} |
|
if (have_vpu_target) |
|
{ |
|
std::string dnn_vpu_type = getInferenceEngineVPUType(); |
|
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2) |
|
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); |
|
if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
} |
|
return true; |
|
} |
|
|
|
bool validateVPUType() |
|
{ |
|
static bool result = validateVPUType_(); |
|
return result; |
|
} |
|
#endif // HAVE_INF_ENGINE |
|
|
|
|
|
void initDNNTests() |
|
{ |
|
const char* extraTestDataPath = |
|
#ifdef WINRT |
|
NULL; |
|
#else |
|
getenv("OPENCV_DNN_TEST_DATA_PATH"); |
|
#endif |
|
if (extraTestDataPath) |
|
cvtest::addDataSearchPath(extraTestDataPath); |
|
|
|
registerGlobalSkipTag( |
|
CV_TEST_TAG_DNN_SKIP_HALIDE, |
|
CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 |
|
); |
|
#if defined(INF_ENGINE_RELEASE) |
|
registerGlobalSkipTag( |
|
CV_TEST_TAG_DNN_SKIP_IE, |
|
#if INF_ENGINE_VER_MAJOR_EQ(2018050000) |
|
CV_TEST_TAG_DNN_SKIP_IE_2018R5, |
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000) |
|
CV_TEST_TAG_DNN_SKIP_IE_2019R1, |
|
# if INF_ENGINE_RELEASE == 2019010100 |
|
CV_TEST_TAG_DNN_SKIP_IE_2019R1_1, |
|
# endif |
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000) |
|
CV_TEST_TAG_DNN_SKIP_IE_2019R2, |
|
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000) |
|
CV_TEST_TAG_DNN_SKIP_IE_2019R3, |
|
#endif |
|
#ifdef HAVE_DNN_NGRAPH |
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, |
|
#endif |
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, |
|
#endif |
|
"" |
|
); |
|
#endif |
|
registerGlobalSkipTag( |
|
// see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X |
|
CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 |
|
); |
|
} |
|
|
|
} // namespace
|
|
|