mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.9 KiB
139 lines
4.9 KiB
#!/usr/bin/env python |
|
|
|
import sys, os, os.path, glob, math, cv2 |
|
from datetime import datetime |
|
from optparse import OptionParser |
|
|
|
def parse(ipath, f): |
|
bbs = [] |
|
path = None |
|
for l in f: |
|
box = None |
|
if l.startswith("Bounding box"): |
|
b = [x.strip() for x in l.split(":")[1].split("-")] |
|
c = [x[1:-1].split(",") for x in b] |
|
d = [int(x) for x in sum(c, [])] |
|
bbs.append(d) |
|
|
|
if l.startswith("Image filename"): |
|
path = os.path.join(os.path.join(ipath, ".."), l.split('"')[-2]) |
|
|
|
return (path, bbs) |
|
|
|
def adjust(box, tb, lr): |
|
|
|
mix = int(round(box[0] - lr)) |
|
miy = int(round(box[1] - tb)) |
|
|
|
max = int(round(box[2] + lr)) |
|
may = int(round(box[3] + tb)) |
|
|
|
return [mix, miy, max, may] |
|
|
|
if __name__ == "__main__": |
|
parser = OptionParser() |
|
parser.add_option("-i", "--input", dest="input", metavar="DIRECTORY", type="string", |
|
help="path to Inria train data folder") |
|
|
|
parser.add_option("-o", "--output", dest="output", metavar="DIRECTORY", type="string", |
|
help="path to store data", default=".") |
|
|
|
parser.add_option("-t", "--target", dest="target", type="string", help="should be train or test", default="train") |
|
|
|
(options, args) = parser.parse_args() |
|
if not options.input: |
|
parser.error("Inria data folder required") |
|
|
|
if options.target not in ["train", "test"]: |
|
parser.error("dataset should contain train or test data") |
|
|
|
octaves = [-1, 0, 1, 2] |
|
|
|
path = os.path.join(options.output, datetime.now().strftime("rescaled-" + options.target + "-%Y-%m-%d-%H-%M-%S")) |
|
os.mkdir(path) |
|
|
|
neg_path = os.path.join(path, "neg") |
|
os.mkdir(neg_path) |
|
|
|
pos_path = os.path.join(path, "pos") |
|
os.mkdir(pos_path) |
|
|
|
print "rescaled Inria training data stored into", path, "\nprocessing", |
|
for each in octaves: |
|
octave = 2**each |
|
|
|
whole_mod_w = int(64 * octave) + 2 * int(20 * octave) |
|
whole_mod_h = int(128 * octave) + 2 * int(20 * octave) |
|
|
|
cpos_path = os.path.join(pos_path, "octave_%d" % each) |
|
os.mkdir(cpos_path) |
|
idx = 0 |
|
|
|
gl = glob.iglob(os.path.join(options.input, "annotations/*.txt")) |
|
for image, boxes in [parse(options.input, open(__p)) for __p in gl]: |
|
for box in boxes: |
|
height = box[3] - box[1] |
|
scale = height / float(96) |
|
|
|
mat = cv2.imread(image) |
|
mat_h, mat_w, _ = mat.shape |
|
|
|
rel_scale = scale / octave |
|
|
|
d_w = whole_mod_w * rel_scale |
|
d_h = whole_mod_h * rel_scale |
|
|
|
top_bottom_border = (d_h - (box[3] - box[1])) / 2.0 |
|
left_right_border = (d_w - (box[2] - box[0])) / 2.0 |
|
|
|
box = adjust(box, top_bottom_border, left_right_border) |
|
inner = [max(0, box[0]), max(0, box[1]), min(mat_w, box[2]), min(mat_h, box[3]) ] |
|
|
|
cropped = mat[inner[1]:inner[3], inner[0]:inner[2], :] |
|
|
|
top = int(max(0, 0 - box[1])) |
|
bottom = int(max(0, box[3] - mat_h)) |
|
left = int(max(0, 0 - box[0])) |
|
right = int(max(0, box[2] - mat_w)) |
|
cropped = cv2.copyMakeBorder(cropped, top, bottom, left, right, cv2.BORDER_REPLICATE) |
|
resized = sft.resize_sample(cropped, whole_mod_w, whole_mod_h) |
|
|
|
out_name = ".png" |
|
if round(math.log(scale)/math.log(2)) < each: |
|
out_name = "_upscaled" + out_name |
|
|
|
cv2.imwrite(os.path.join(cpos_path, "sample_%d" % idx + out_name), resized) |
|
|
|
flipped = cv2.flip(resized, 1) |
|
cv2.imwrite(os.path.join(cpos_path, "sample_%d" % idx + "_mirror" + out_name), flipped) |
|
idx = idx + 1 |
|
print "." , |
|
sys.stdout.flush() |
|
|
|
idx = 0 |
|
cneg_path = os.path.join(neg_path, "octave_%d" % each) |
|
os.mkdir(cneg_path) |
|
|
|
for each in [__n for __n in glob.iglob(os.path.join(options.input, "neg/*.*"))]: |
|
img = cv2.imread(each) |
|
min_shape = (1.5 * whole_mod_h, 1.5 * whole_mod_w) |
|
|
|
if (img.shape[1] <= min_shape[1]) or (img.shape[0] <= min_shape[0]): |
|
out_name = "negative_sample_%i_resized.png" % idx |
|
|
|
ratio = float(img.shape[1]) / img.shape[0] |
|
|
|
if (img.shape[1] <= min_shape[1]): |
|
resized_size = (int(min_shape[1]), int(min_shape[1] / ratio)) |
|
|
|
if (img.shape[0] <= min_shape[0]): |
|
resized_size = (int(min_shape[0] * ratio), int(min_shape[0])) |
|
|
|
img = sft.resize_sample(img, resized_size[0], resized_size[1]) |
|
else: |
|
out_name = "negative_sample_%i.png" % idx |
|
|
|
cv2.imwrite(os.path.join(cneg_path, out_name), img) |
|
idx = idx + 1 |
|
print "." , |
|
sys.stdout.flush() |