mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
18 KiB
352 lines
18 KiB
//////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
/***************************************************************************************************** |
|
|
|
Software for visualising cascade classifier models trained by OpenCV and to get a better |
|
understanding of the used features. |
|
|
|
USAGE: |
|
./visualise_models -model <model.xml> -image <ref.png> -data <output folder> |
|
|
|
LIMITS |
|
- Use an absolute path for the output folder to ensure the tool works |
|
- Only handles cascade classifier models |
|
- Handles stumps only for the moment |
|
- Needs a valid training/test sample window with the original model dimensions, passed as `ref.png` |
|
- Can handle HAAR and LBP features |
|
|
|
Created by: Puttemans Steven - April 2016 |
|
*****************************************************************************************************/ |
|
|
|
#include <opencv2/core.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <opencv2/videoio.hpp> |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
struct rect_data{ |
|
int x; |
|
int y; |
|
int w; |
|
int h; |
|
float weight; |
|
}; |
|
|
|
int main( int argc, const char** argv ) |
|
{ |
|
// Read in the input arguments |
|
string model = ""; |
|
string output_folder = ""; |
|
string image_ref = ""; |
|
for(int i = 1; i < argc; ++i ) |
|
{ |
|
if( !strcmp( argv[i], "-model" ) ) |
|
{ |
|
model = argv[++i]; |
|
}else if( !strcmp( argv[i], "-image" ) ){ |
|
image_ref = argv[++i]; |
|
}else if( !strcmp( argv[i], "-data" ) ){ |
|
output_folder = argv[++i]; |
|
} |
|
} |
|
|
|
// Value for timing |
|
// You can increase this to have a better visualisation during the generation |
|
int timing = 1; |
|
|
|
// Value for cols of storing elements |
|
int cols_prefered = 5; |
|
|
|
// Open the XML model |
|
FileStorage fs; |
|
fs.open(model, FileStorage::READ); |
|
|
|
// Get a the required information |
|
// First decide which feature type we are using |
|
FileNode cascade = fs["cascade"]; |
|
string feature_type = cascade["featureType"]; |
|
bool haar = false, lbp = false; |
|
if (feature_type.compare("HAAR") == 0){ |
|
haar = true; |
|
} |
|
if (feature_type.compare("LBP") == 0){ |
|
lbp = true; |
|
} |
|
if ( feature_type.compare("HAAR") != 0 && feature_type.compare("LBP")){ |
|
cerr << "The model is not an HAAR or LBP feature based model!" << endl; |
|
cerr << "Please select a model that can be visualized by the software." << endl; |
|
return -1; |
|
} |
|
|
|
// We make a visualisation mask - which increases the window to make it at least a bit more visible |
|
int resize_factor = 10; |
|
int resize_storage_factor = 10; |
|
Mat reference_image = imread(image_ref, IMREAD_GRAYSCALE ); |
|
Mat visualization; |
|
resize(reference_image, visualization, Size(reference_image.cols * resize_factor, reference_image.rows * resize_factor)); |
|
|
|
// First recover for each stage the number of weak features and their index |
|
// Important since it is NOT sequential when using LBP features |
|
vector< vector<int> > stage_features; |
|
FileNode stages = cascade["stages"]; |
|
FileNodeIterator it_stages = stages.begin(), it_stages_end = stages.end(); |
|
int idx = 0; |
|
for( ; it_stages != it_stages_end; it_stages++, idx++ ){ |
|
vector<int> current_feature_indexes; |
|
FileNode weak_classifiers = (*it_stages)["weakClassifiers"]; |
|
FileNodeIterator it_weak = weak_classifiers.begin(), it_weak_end = weak_classifiers.end(); |
|
vector<int> values; |
|
for(int idy = 0; it_weak != it_weak_end; it_weak++, idy++ ){ |
|
(*it_weak)["internalNodes"] >> values; |
|
current_feature_indexes.push_back( (int)values[2] ); |
|
} |
|
stage_features.push_back(current_feature_indexes); |
|
} |
|
|
|
// If the output option has been chosen than we will store a combined image plane for |
|
// each stage, containing all weak classifiers for that stage. |
|
bool draw_planes = false; |
|
stringstream output_video; |
|
output_video << output_folder << "model_visualization.avi"; |
|
VideoWriter result_video; |
|
if( output_folder.compare("") != 0 ){ |
|
draw_planes = true; |
|
result_video.open(output_video.str(), VideoWriter::fourcc('X','V','I','D'), 15, Size(reference_image.cols * resize_factor, reference_image.rows * resize_factor), false); |
|
} |
|
|
|
if(haar){ |
|
// Grab the corresponding features dimensions and weights |
|
FileNode features = cascade["features"]; |
|
vector< vector< rect_data > > feature_data; |
|
FileNodeIterator it_features = features.begin(), it_features_end = features.end(); |
|
for(int idf = 0; it_features != it_features_end; it_features++, idf++ ){ |
|
vector< rect_data > current_feature_rectangles; |
|
FileNode rectangles = (*it_features)["rects"]; |
|
int nrects = (int)rectangles.size(); |
|
for(int k = 0; k < nrects; k++){ |
|
rect_data current_data; |
|
FileNode single_rect = rectangles[k]; |
|
current_data.x = (int)single_rect[0]; |
|
current_data.y = (int)single_rect[1]; |
|
current_data.w = (int)single_rect[2]; |
|
current_data.h = (int)single_rect[3]; |
|
current_data.weight = (float)single_rect[4]; |
|
current_feature_rectangles.push_back(current_data); |
|
} |
|
feature_data.push_back(current_feature_rectangles); |
|
} |
|
|
|
// Loop over each possible feature on its index, visualise on the mask and wait a bit, |
|
// then continue to the next feature. |
|
// If visualisations should be stored then do the in between calculations |
|
Mat image_plane; |
|
Mat metadata = Mat::zeros(150, 1000, CV_8UC1); |
|
vector< rect_data > current_rects; |
|
for(int sid = 0; sid < (int)stage_features.size(); sid ++){ |
|
if(draw_planes){ |
|
int features_nmbr = (int)stage_features[sid].size(); |
|
int cols = cols_prefered; |
|
int rows = features_nmbr / cols; |
|
if( (features_nmbr % cols) > 0){ |
|
rows++; |
|
} |
|
image_plane = Mat::zeros(reference_image.rows * resize_storage_factor * rows, reference_image.cols * resize_storage_factor * cols, CV_8UC1); |
|
} |
|
for(int fid = 0; fid < (int)stage_features[sid].size(); fid++){ |
|
stringstream meta1, meta2; |
|
meta1 << "Stage " << sid << " / Feature " << fid; |
|
meta2 << "Rectangles: "; |
|
Mat temp_window = visualization.clone(); |
|
Mat temp_metadata = metadata.clone(); |
|
int current_feature_index = stage_features[sid][fid]; |
|
current_rects = feature_data[current_feature_index]; |
|
Mat single_feature = reference_image.clone(); |
|
resize(single_feature, single_feature, Size(), resize_storage_factor, resize_storage_factor); |
|
for(int i = 0; i < (int)current_rects.size(); i++){ |
|
rect_data local = current_rects[i]; |
|
if(draw_planes){ |
|
if(local.weight >= 0){ |
|
rectangle(single_feature, Rect(local.x * resize_storage_factor, local.y * resize_storage_factor, local.w * resize_storage_factor, local.h * resize_storage_factor), Scalar(0), FILLED); |
|
}else{ |
|
rectangle(single_feature, Rect(local.x * resize_storage_factor, local.y * resize_storage_factor, local.w * resize_storage_factor, local.h * resize_storage_factor), Scalar(255), FILLED); |
|
} |
|
} |
|
Rect part(local.x * resize_factor, local.y * resize_factor, local.w * resize_factor, local.h * resize_factor); |
|
meta2 << part << " (w " << local.weight << ") "; |
|
if(local.weight >= 0){ |
|
rectangle(temp_window, part, Scalar(0), FILLED); |
|
}else{ |
|
rectangle(temp_window, part, Scalar(255), FILLED); |
|
} |
|
} |
|
imshow("features", temp_window); |
|
putText(temp_window, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255)); |
|
result_video.write(temp_window); |
|
// Copy the feature image if needed |
|
if(draw_planes){ |
|
single_feature.copyTo(image_plane(Rect(0 + (fid%cols_prefered)*single_feature.cols, 0 + (fid/cols_prefered) * single_feature.rows, single_feature.cols, single_feature.rows))); |
|
} |
|
putText(temp_metadata, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255)); |
|
putText(temp_metadata, meta2.str(), Point(15,40), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255)); |
|
imshow("metadata", temp_metadata); |
|
waitKey(timing); |
|
} |
|
//Store the stage image if needed |
|
if(draw_planes){ |
|
stringstream save_location; |
|
save_location << output_folder << "stage_" << sid << ".png"; |
|
imwrite(save_location.str(), image_plane); |
|
} |
|
} |
|
} |
|
|
|
if(lbp){ |
|
// Grab the corresponding features dimensions and weights |
|
FileNode features = cascade["features"]; |
|
vector<Rect> feature_data; |
|
FileNodeIterator it_features = features.begin(), it_features_end = features.end(); |
|
for(int idf = 0; it_features != it_features_end; it_features++, idf++ ){ |
|
FileNode rectangle = (*it_features)["rect"]; |
|
Rect current_feature ((int)rectangle[0], (int)rectangle[1], (int)rectangle[2], (int)rectangle[3]); |
|
feature_data.push_back(current_feature); |
|
} |
|
|
|
// Loop over each possible feature on its index, visualise on the mask and wait a bit, |
|
// then continue to the next feature. |
|
Mat image_plane; |
|
Mat metadata = Mat::zeros(150, 1000, CV_8UC1); |
|
for(int sid = 0; sid < (int)stage_features.size(); sid ++){ |
|
if(draw_planes){ |
|
int features_nmbr = (int)stage_features[sid].size(); |
|
int cols = cols_prefered; |
|
int rows = features_nmbr / cols; |
|
if( (features_nmbr % cols) > 0){ |
|
rows++; |
|
} |
|
image_plane = Mat::zeros(reference_image.rows * resize_storage_factor * rows, reference_image.cols * resize_storage_factor * cols, CV_8UC1); |
|
} |
|
for(int fid = 0; fid < (int)stage_features[sid].size(); fid++){ |
|
stringstream meta1, meta2; |
|
meta1 << "Stage " << sid << " / Feature " << fid; |
|
meta2 << "Rectangle: "; |
|
Mat temp_window = visualization.clone(); |
|
Mat temp_metadata = metadata.clone(); |
|
int current_feature_index = stage_features[sid][fid]; |
|
Rect current_rect = feature_data[current_feature_index]; |
|
Mat single_feature = reference_image.clone(); |
|
resize(single_feature, single_feature, Size(), resize_storage_factor, resize_storage_factor); |
|
|
|
// VISUALISATION |
|
// The rectangle is the top left one of a 3x3 block LBP constructor |
|
Rect resized(current_rect.x * resize_factor, current_rect.y * resize_factor, current_rect.width * resize_factor, current_rect.height * resize_factor); |
|
meta2 << resized; |
|
// Top left |
|
rectangle(temp_window, resized, Scalar(255), 1); |
|
// Top middle |
|
rectangle(temp_window, Rect(resized.x + resized.width, resized.y, resized.width, resized.height), Scalar(255), 1); |
|
// Top right |
|
rectangle(temp_window, Rect(resized.x + 2*resized.width, resized.y, resized.width, resized.height), Scalar(255), 1); |
|
// Middle left |
|
rectangle(temp_window, Rect(resized.x, resized.y + resized.height, resized.width, resized.height), Scalar(255), 1); |
|
// Middle middle |
|
rectangle(temp_window, Rect(resized.x + resized.width, resized.y + resized.height, resized.width, resized.height), Scalar(255), FILLED); |
|
// Middle right |
|
rectangle(temp_window, Rect(resized.x + 2*resized.width, resized.y + resized.height, resized.width, resized.height), Scalar(255), 1); |
|
// Bottom left |
|
rectangle(temp_window, Rect(resized.x, resized.y + 2*resized.height, resized.width, resized.height), Scalar(255), 1); |
|
// Bottom middle |
|
rectangle(temp_window, Rect(resized.x + resized.width, resized.y + 2*resized.height, resized.width, resized.height), Scalar(255), 1); |
|
// Bottom right |
|
rectangle(temp_window, Rect(resized.x + 2*resized.width, resized.y + 2*resized.height, resized.width, resized.height), Scalar(255), 1); |
|
|
|
if(draw_planes){ |
|
Rect resized_inner(current_rect.x * resize_storage_factor, current_rect.y * resize_storage_factor, current_rect.width * resize_storage_factor, current_rect.height * resize_storage_factor); |
|
// Top left |
|
rectangle(single_feature, resized_inner, Scalar(255), 1); |
|
// Top middle |
|
rectangle(single_feature, Rect(resized_inner.x + resized_inner.width, resized_inner.y, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
// Top right |
|
rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
// Middle left |
|
rectangle(single_feature, Rect(resized_inner.x, resized_inner.y + resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
// Middle middle |
|
rectangle(single_feature, Rect(resized_inner.x + resized_inner.width, resized_inner.y + resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), FILLED); |
|
// Middle right |
|
rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y + resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
// Bottom left |
|
rectangle(single_feature, Rect(resized_inner.x, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
// Bottom middle |
|
rectangle(single_feature, Rect(resized_inner.x + resized_inner.width, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
// Bottom right |
|
rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1); |
|
|
|
single_feature.copyTo(image_plane(Rect(0 + (fid%cols_prefered)*single_feature.cols, 0 + (fid/cols_prefered) * single_feature.rows, single_feature.cols, single_feature.rows))); |
|
} |
|
|
|
putText(temp_metadata, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255)); |
|
putText(temp_metadata, meta2.str(), Point(15,40), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255)); |
|
imshow("metadata", temp_metadata); |
|
imshow("features", temp_window); |
|
putText(temp_window, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255)); |
|
result_video.write(temp_window); |
|
|
|
waitKey(timing); |
|
} |
|
|
|
//Store the stage image if needed |
|
if(draw_planes){ |
|
stringstream save_location; |
|
save_location << output_folder << "stage_" << sid << ".png"; |
|
imwrite(save_location.str(), image_plane); |
|
} |
|
} |
|
} |
|
return 0; |
|
}
|
|
|