mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1640 lines
49 KiB
1640 lines
49 KiB
/* |
|
* jchuff.c |
|
* |
|
* Copyright (C) 1991-1997, Thomas G. Lane. |
|
* Modified 2006-2019 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains Huffman entropy encoding routines. |
|
* Both sequential and progressive modes are supported in this single module. |
|
* |
|
* Much of the complexity here has to do with supporting output suspension. |
|
* If the data destination module demands suspension, we want to be able to |
|
* back up to the start of the current MCU. To do this, we copy state |
|
* variables into local working storage, and update them back to the |
|
* permanent JPEG objects only upon successful completion of an MCU. |
|
* |
|
* We do not support output suspension for the progressive JPEG mode, since |
|
* the library currently does not allow multiple-scan files to be written |
|
* with output suspension. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
/* The legal range of a DCT coefficient is |
|
* -1024 .. +1023 for 8-bit data; |
|
* -16384 .. +16383 for 12-bit data. |
|
* Hence the magnitude should always fit in 10 or 14 bits respectively. |
|
*/ |
|
|
|
#if BITS_IN_JSAMPLE == 8 |
|
#define MAX_COEF_BITS 10 |
|
#else |
|
#define MAX_COEF_BITS 14 |
|
#endif |
|
|
|
/* Derived data constructed for each Huffman table */ |
|
|
|
typedef struct { |
|
unsigned int ehufco[256]; /* code for each symbol */ |
|
char ehufsi[256]; /* length of code for each symbol */ |
|
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ |
|
} c_derived_tbl; |
|
|
|
|
|
/* Expanded entropy encoder object for Huffman encoding. |
|
* |
|
* The savable_state subrecord contains fields that change within an MCU, |
|
* but must not be updated permanently until we complete the MCU. |
|
*/ |
|
|
|
typedef struct { |
|
INT32 put_buffer; /* current bit-accumulation buffer */ |
|
int put_bits; /* # of bits now in it */ |
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
|
} savable_state; |
|
|
|
/* This macro is to work around compilers with missing or broken |
|
* structure assignment. You'll need to fix this code if you have |
|
* such a compiler and you change MAX_COMPS_IN_SCAN. |
|
*/ |
|
|
|
#ifndef NO_STRUCT_ASSIGN |
|
#define ASSIGN_STATE(dest,src) ((dest) = (src)) |
|
#else |
|
#if MAX_COMPS_IN_SCAN == 4 |
|
#define ASSIGN_STATE(dest,src) \ |
|
((dest).put_buffer = (src).put_buffer, \ |
|
(dest).put_bits = (src).put_bits, \ |
|
(dest).last_dc_val[0] = (src).last_dc_val[0], \ |
|
(dest).last_dc_val[1] = (src).last_dc_val[1], \ |
|
(dest).last_dc_val[2] = (src).last_dc_val[2], \ |
|
(dest).last_dc_val[3] = (src).last_dc_val[3]) |
|
#endif |
|
#endif |
|
|
|
|
|
typedef struct { |
|
struct jpeg_entropy_encoder pub; /* public fields */ |
|
|
|
savable_state saved; /* Bit buffer & DC state at start of MCU */ |
|
|
|
/* These fields are NOT loaded into local working state. */ |
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
|
int next_restart_num; /* next restart number to write (0-7) */ |
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan) */ |
|
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
|
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
|
|
|
/* Statistics tables for optimization */ |
|
long * dc_count_ptrs[NUM_HUFF_TBLS]; |
|
long * ac_count_ptrs[NUM_HUFF_TBLS]; |
|
|
|
/* Following fields used only in progressive mode */ |
|
|
|
/* Mode flag: TRUE for optimization, FALSE for actual data output */ |
|
boolean gather_statistics; |
|
|
|
/* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
|
*/ |
|
JOCTET * next_output_byte; /* => next byte to write in buffer */ |
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
|
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
|
|
|
/* Coding status for AC components */ |
|
int ac_tbl_no; /* the table number of the single component */ |
|
unsigned int EOBRUN; /* run length of EOBs */ |
|
unsigned int BE; /* # of buffered correction bits before MCU */ |
|
char * bit_buffer; /* buffer for correction bits (1 per char) */ |
|
/* packing correction bits tightly would save some space but cost time... */ |
|
} huff_entropy_encoder; |
|
|
|
typedef huff_entropy_encoder * huff_entropy_ptr; |
|
|
|
/* Working state while writing an MCU (sequential mode). |
|
* This struct contains all the fields that are needed by subroutines. |
|
*/ |
|
|
|
typedef struct { |
|
JOCTET * next_output_byte; /* => next byte to write in buffer */ |
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
|
savable_state cur; /* Current bit buffer & DC state */ |
|
j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
|
} working_state; |
|
|
|
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
|
* buffer can hold. Larger sizes may slightly improve compression, but |
|
* 1000 is already well into the realm of overkill. |
|
* The minimum safe size is 64 bits. |
|
*/ |
|
|
|
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
|
|
|
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
|
* We assume that int right shift is unsigned if INT32 right shift is, |
|
* which should be safe. |
|
*/ |
|
|
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED |
|
#define ISHIFT_TEMPS int ishift_temp; |
|
#define IRIGHT_SHIFT(x,shft) \ |
|
((ishift_temp = (x)) < 0 ? \ |
|
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
|
(ishift_temp >> (shft))) |
|
#else |
|
#define ISHIFT_TEMPS |
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
|
#endif |
|
|
|
|
|
/* |
|
* Compute the derived values for a Huffman table. |
|
* This routine also performs some validation checks on the table. |
|
*/ |
|
|
|
LOCAL(void) |
|
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
|
c_derived_tbl ** pdtbl) |
|
{ |
|
JHUFF_TBL *htbl; |
|
c_derived_tbl *dtbl; |
|
int p, i, l, lastp, si, maxsymbol; |
|
char huffsize[257]; |
|
unsigned int huffcode[257]; |
|
unsigned int code; |
|
|
|
/* Note that huffsize[] and huffcode[] are filled in code-length order, |
|
* paralleling the order of the symbols themselves in htbl->huffval[]. |
|
*/ |
|
|
|
/* Find the input Huffman table */ |
|
if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
|
htbl = |
|
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
|
if (htbl == NULL) |
|
htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); |
|
|
|
/* Allocate a workspace if we haven't already done so. */ |
|
if (*pdtbl == NULL) |
|
*pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl)); |
|
dtbl = *pdtbl; |
|
|
|
/* Figure C.1: make table of Huffman code length for each symbol */ |
|
|
|
p = 0; |
|
for (l = 1; l <= 16; l++) { |
|
i = (int) htbl->bits[l]; |
|
if (i < 0 || p + i > 256) /* protect against table overrun */ |
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
|
while (i--) |
|
huffsize[p++] = (char) l; |
|
} |
|
huffsize[p] = 0; |
|
lastp = p; |
|
|
|
/* Figure C.2: generate the codes themselves */ |
|
/* We also validate that the counts represent a legal Huffman code tree. */ |
|
|
|
code = 0; |
|
si = huffsize[0]; |
|
p = 0; |
|
while (huffsize[p]) { |
|
while (((int) huffsize[p]) == si) { |
|
huffcode[p++] = code; |
|
code++; |
|
} |
|
/* code is now 1 more than the last code used for codelength si; but |
|
* it must still fit in si bits, since no code is allowed to be all ones. |
|
*/ |
|
if (((INT32) code) >= (((INT32) 1) << si)) |
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
|
code <<= 1; |
|
si++; |
|
} |
|
|
|
/* Figure C.3: generate encoding tables */ |
|
/* These are code and size indexed by symbol value */ |
|
|
|
/* Set all codeless symbols to have code length 0; |
|
* this lets us detect duplicate VAL entries here, and later |
|
* allows emit_bits to detect any attempt to emit such symbols. |
|
*/ |
|
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
|
|
|
/* This is also a convenient place to check for out-of-range |
|
* and duplicated VAL entries. We allow 0..255 for AC symbols |
|
* but only 0..15 for DC. (We could constrain them further |
|
* based on data depth and mode, but this seems enough.) |
|
*/ |
|
maxsymbol = isDC ? 15 : 255; |
|
|
|
for (p = 0; p < lastp; p++) { |
|
i = htbl->huffval[p]; |
|
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
|
dtbl->ehufco[i] = huffcode[p]; |
|
dtbl->ehufsi[i] = huffsize[p]; |
|
} |
|
} |
|
|
|
|
|
/* Outputting bytes to the file. |
|
* NB: these must be called only when actually outputting, |
|
* that is, entropy->gather_statistics == FALSE. |
|
*/ |
|
|
|
/* Emit a byte, taking 'action' if must suspend. */ |
|
#define emit_byte_s(state,val,action) \ |
|
{ *(state)->next_output_byte++ = (JOCTET) (val); \ |
|
if (--(state)->free_in_buffer == 0) \ |
|
if (! dump_buffer_s(state)) \ |
|
{ action; } } |
|
|
|
/* Emit a byte */ |
|
#define emit_byte_e(entropy,val) \ |
|
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
|
if (--(entropy)->free_in_buffer == 0) \ |
|
dump_buffer_e(entropy); } |
|
|
|
|
|
LOCAL(boolean) |
|
dump_buffer_s (working_state * state) |
|
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
|
{ |
|
struct jpeg_destination_mgr * dest = state->cinfo->dest; |
|
|
|
if (! (*dest->empty_output_buffer) (state->cinfo)) |
|
return FALSE; |
|
/* After a successful buffer dump, must reset buffer pointers */ |
|
state->next_output_byte = dest->next_output_byte; |
|
state->free_in_buffer = dest->free_in_buffer; |
|
return TRUE; |
|
} |
|
|
|
|
|
LOCAL(void) |
|
dump_buffer_e (huff_entropy_ptr entropy) |
|
/* Empty the output buffer; we do not support suspension in this case. */ |
|
{ |
|
struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
|
|
|
if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
|
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
|
/* After a successful buffer dump, must reset buffer pointers */ |
|
entropy->next_output_byte = dest->next_output_byte; |
|
entropy->free_in_buffer = dest->free_in_buffer; |
|
} |
|
|
|
|
|
/* Outputting bits to the file */ |
|
|
|
/* Only the right 24 bits of put_buffer are used; the valid bits are |
|
* left-justified in this part. At most 16 bits can be passed to emit_bits |
|
* in one call, and we never retain more than 7 bits in put_buffer |
|
* between calls, so 24 bits are sufficient. |
|
*/ |
|
|
|
INLINE |
|
LOCAL(boolean) |
|
emit_bits_s (working_state * state, unsigned int code, int size) |
|
/* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding tightly. */ |
|
register INT32 put_buffer; |
|
register int put_bits; |
|
|
|
/* if size is 0, caller used an invalid Huffman table entry */ |
|
if (size == 0) |
|
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
|
|
|
/* mask off any extra bits in code */ |
|
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
|
|
|
/* new number of bits in buffer */ |
|
put_bits = size + state->cur.put_bits; |
|
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */ |
|
|
|
/* and merge with old buffer contents */ |
|
put_buffer |= state->cur.put_buffer; |
|
|
|
while (put_bits >= 8) { |
|
int c = (int) ((put_buffer >> 16) & 0xFF); |
|
|
|
emit_byte_s(state, c, return FALSE); |
|
if (c == 0xFF) { /* need to stuff a zero byte? */ |
|
emit_byte_s(state, 0, return FALSE); |
|
} |
|
put_buffer <<= 8; |
|
put_bits -= 8; |
|
} |
|
|
|
state->cur.put_buffer = put_buffer; /* update state variables */ |
|
state->cur.put_bits = put_bits; |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
INLINE |
|
LOCAL(void) |
|
emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) |
|
/* Emit some bits, unless we are in gather mode */ |
|
{ |
|
/* This routine is heavily used, so it's worth coding tightly. */ |
|
register INT32 put_buffer; |
|
register int put_bits; |
|
|
|
/* if size is 0, caller used an invalid Huffman table entry */ |
|
if (size == 0) |
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
|
|
|
if (entropy->gather_statistics) |
|
return; /* do nothing if we're only getting stats */ |
|
|
|
/* mask off any extra bits in code */ |
|
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
|
|
|
/* new number of bits in buffer */ |
|
put_bits = size + entropy->saved.put_bits; |
|
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */ |
|
|
|
/* and merge with old buffer contents */ |
|
put_buffer |= entropy->saved.put_buffer; |
|
|
|
while (put_bits >= 8) { |
|
int c = (int) ((put_buffer >> 16) & 0xFF); |
|
|
|
emit_byte_e(entropy, c); |
|
if (c == 0xFF) { /* need to stuff a zero byte? */ |
|
emit_byte_e(entropy, 0); |
|
} |
|
put_buffer <<= 8; |
|
put_bits -= 8; |
|
} |
|
|
|
entropy->saved.put_buffer = put_buffer; /* update variables */ |
|
entropy->saved.put_bits = put_bits; |
|
} |
|
|
|
|
|
LOCAL(boolean) |
|
flush_bits_s (working_state * state) |
|
{ |
|
if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ |
|
return FALSE; |
|
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
|
state->cur.put_bits = 0; |
|
return TRUE; |
|
} |
|
|
|
|
|
LOCAL(void) |
|
flush_bits_e (huff_entropy_ptr entropy) |
|
{ |
|
emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
|
entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ |
|
entropy->saved.put_bits = 0; |
|
} |
|
|
|
|
|
/* |
|
* Emit (or just count) a Huffman symbol. |
|
*/ |
|
|
|
INLINE |
|
LOCAL(void) |
|
emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
|
{ |
|
if (entropy->gather_statistics) |
|
entropy->dc_count_ptrs[tbl_no][symbol]++; |
|
else { |
|
c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; |
|
emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
|
} |
|
} |
|
|
|
|
|
INLINE |
|
LOCAL(void) |
|
emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
|
{ |
|
if (entropy->gather_statistics) |
|
entropy->ac_count_ptrs[tbl_no][symbol]++; |
|
else { |
|
c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; |
|
emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Emit bits from a correction bit buffer. |
|
*/ |
|
|
|
LOCAL(void) |
|
emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, |
|
unsigned int nbits) |
|
{ |
|
if (entropy->gather_statistics) |
|
return; /* no real work */ |
|
|
|
while (nbits > 0) { |
|
emit_bits_e(entropy, (unsigned int) (*bufstart), 1); |
|
bufstart++; |
|
nbits--; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Emit any pending EOBRUN symbol. |
|
*/ |
|
|
|
LOCAL(void) |
|
emit_eobrun (huff_entropy_ptr entropy) |
|
{ |
|
register int temp, nbits; |
|
|
|
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
|
temp = entropy->EOBRUN; |
|
nbits = 0; |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* safety check: shouldn't happen given limited correction-bit buffer */ |
|
if (nbits > 14) |
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
|
|
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
|
if (nbits) |
|
emit_bits_e(entropy, entropy->EOBRUN, nbits); |
|
|
|
entropy->EOBRUN = 0; |
|
|
|
/* Emit any buffered correction bits */ |
|
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
|
entropy->BE = 0; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Emit a restart marker & resynchronize predictions. |
|
*/ |
|
|
|
LOCAL(boolean) |
|
emit_restart_s (working_state * state, int restart_num) |
|
{ |
|
int ci; |
|
|
|
if (! flush_bits_s(state)) |
|
return FALSE; |
|
|
|
emit_byte_s(state, 0xFF, return FALSE); |
|
emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); |
|
|
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
|
state->cur.last_dc_val[ci] = 0; |
|
|
|
/* The restart counter is not updated until we successfully write the MCU. */ |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
LOCAL(void) |
|
emit_restart_e (huff_entropy_ptr entropy, int restart_num) |
|
{ |
|
int ci; |
|
|
|
emit_eobrun(entropy); |
|
|
|
if (! entropy->gather_statistics) { |
|
flush_bits_e(entropy); |
|
emit_byte_e(entropy, 0xFF); |
|
emit_byte_e(entropy, JPEG_RST0 + restart_num); |
|
} |
|
|
|
if (entropy->cinfo->Ss == 0) { |
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
|
entropy->saved.last_dc_val[ci] = 0; |
|
} else { |
|
/* Re-initialize all AC-related fields to 0 */ |
|
entropy->EOBRUN = 0; |
|
entropy->BE = 0; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for DC initial scan (either spectral selection, |
|
* or first pass of successive approximation). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
register int temp, temp2; |
|
register int nbits; |
|
int blkn, ci, tbl; |
|
ISHIFT_TEMPS |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart_e(entropy, entropy->next_restart_num); |
|
|
|
/* Encode the MCU data blocks */ |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
ci = cinfo->MCU_membership[blkn]; |
|
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
|
|
|
/* Compute the DC value after the required point transform by Al. |
|
* This is simply an arithmetic right shift. |
|
*/ |
|
temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); |
|
|
|
/* DC differences are figured on the point-transformed values. */ |
|
temp2 = temp - entropy->saved.last_dc_val[ci]; |
|
entropy->saved.last_dc_val[ci] = temp; |
|
|
|
/* Encode the DC coefficient difference per section G.1.2.1 */ |
|
temp = temp2; |
|
if (temp < 0) { |
|
temp = -temp; /* temp is abs value of input */ |
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */ |
|
/* This code assumes we are on a two's complement machine */ |
|
temp2--; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 0; |
|
while (temp) { |
|
nbits++; |
|
temp >>= 1; |
|
} |
|
/* Check for out-of-range coefficient values. |
|
* Since we're encoding a difference, the range limit is twice as much. |
|
*/ |
|
if (nbits > MAX_COEF_BITS+1) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count/emit the Huffman-coded symbol for the number of bits */ |
|
emit_dc_symbol(entropy, tbl, nbits); |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
if (nbits) /* emit_bits rejects calls with size 0 */ |
|
emit_bits_e(entropy, (unsigned int) temp2, nbits); |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for AC initial scan (either spectral selection, |
|
* or first pass of successive approximation). |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
const int * natural_order; |
|
JBLOCKROW block; |
|
register int temp, temp2; |
|
register int nbits; |
|
register int r, k; |
|
int Se, Al; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart_e(entropy, entropy->next_restart_num); |
|
|
|
Se = cinfo->Se; |
|
Al = cinfo->Al; |
|
natural_order = cinfo->natural_order; |
|
|
|
/* Encode the MCU data block */ |
|
block = MCU_data[0]; |
|
|
|
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
|
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
if ((temp = (*block)[natural_order[k]]) == 0) { |
|
r++; |
|
continue; |
|
} |
|
/* We must apply the point transform by Al. For AC coefficients this |
|
* is an integer division with rounding towards 0. To do this portably |
|
* in C, we shift after obtaining the absolute value; so the code is |
|
* interwoven with finding the abs value (temp) and output bits (temp2). |
|
*/ |
|
if (temp < 0) { |
|
temp = -temp; /* temp is abs value of input */ |
|
temp >>= Al; /* apply the point transform */ |
|
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
|
temp2 = ~temp; |
|
} else { |
|
temp >>= Al; /* apply the point transform */ |
|
temp2 = temp; |
|
} |
|
/* Watch out for case that nonzero coef is zero after point transform */ |
|
if (temp == 0) { |
|
r++; |
|
continue; |
|
} |
|
|
|
/* Emit any pending EOBRUN */ |
|
if (entropy->EOBRUN > 0) |
|
emit_eobrun(entropy); |
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
|
while (r > 15) { |
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
|
r -= 16; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 1; /* there must be at least one 1 bit */ |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* Check for out-of-range coefficient values */ |
|
if (nbits > MAX_COEF_BITS) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count/emit Huffman symbol for run length / number of bits */ |
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
emit_bits_e(entropy, (unsigned int) temp2, nbits); |
|
|
|
r = 0; /* reset zero run length */ |
|
} |
|
|
|
if (r > 0) { /* If there are trailing zeroes, */ |
|
entropy->EOBRUN++; /* count an EOB */ |
|
if (entropy->EOBRUN == 0x7FFF) |
|
emit_eobrun(entropy); /* force it out to avoid overflow */ |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for DC successive approximation refinement scan. |
|
* Note: we assume such scans can be multi-component, |
|
* although the spec is not very clear on the point. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
int Al, blkn; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart_e(entropy, entropy->next_restart_num); |
|
|
|
Al = cinfo->Al; |
|
|
|
/* Encode the MCU data blocks */ |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
/* We simply emit the Al'th bit of the DC coefficient value. */ |
|
emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* MCU encoding for AC successive approximation refinement scan. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
const int * natural_order; |
|
JBLOCKROW block; |
|
register int temp; |
|
register int r, k; |
|
int Se, Al; |
|
int EOB; |
|
char *BR_buffer; |
|
unsigned int BR; |
|
int absvalues[DCTSIZE2]; |
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) |
|
if (entropy->restarts_to_go == 0) |
|
emit_restart_e(entropy, entropy->next_restart_num); |
|
|
|
Se = cinfo->Se; |
|
Al = cinfo->Al; |
|
natural_order = cinfo->natural_order; |
|
|
|
/* Encode the MCU data block */ |
|
block = MCU_data[0]; |
|
|
|
/* It is convenient to make a pre-pass to determine the transformed |
|
* coefficients' absolute values and the EOB position. |
|
*/ |
|
EOB = 0; |
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
temp = (*block)[natural_order[k]]; |
|
/* We must apply the point transform by Al. For AC coefficients this |
|
* is an integer division with rounding towards 0. To do this portably |
|
* in C, we shift after obtaining the absolute value. |
|
*/ |
|
if (temp < 0) |
|
temp = -temp; /* temp is abs value of input */ |
|
temp >>= Al; /* apply the point transform */ |
|
absvalues[k] = temp; /* save abs value for main pass */ |
|
if (temp == 1) |
|
EOB = k; /* EOB = index of last newly-nonzero coef */ |
|
} |
|
|
|
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
BR = 0; /* BR = count of buffered bits added now */ |
|
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
|
|
|
for (k = cinfo->Ss; k <= Se; k++) { |
|
if ((temp = absvalues[k]) == 0) { |
|
r++; |
|
continue; |
|
} |
|
|
|
/* Emit any required ZRLs, but not if they can be folded into EOB */ |
|
while (r > 15 && k <= EOB) { |
|
/* emit any pending EOBRUN and the BE correction bits */ |
|
emit_eobrun(entropy); |
|
/* Emit ZRL */ |
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
|
r -= 16; |
|
/* Emit buffered correction bits that must be associated with ZRL */ |
|
emit_buffered_bits(entropy, BR_buffer, BR); |
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
|
BR = 0; |
|
} |
|
|
|
/* If the coef was previously nonzero, it only needs a correction bit. |
|
* NOTE: a straight translation of the spec's figure G.7 would suggest |
|
* that we also need to test r > 15. But if r > 15, we can only get here |
|
* if k > EOB, which implies that this coefficient is not 1. |
|
*/ |
|
if (temp > 1) { |
|
/* The correction bit is the next bit of the absolute value. */ |
|
BR_buffer[BR++] = (char) (temp & 1); |
|
continue; |
|
} |
|
|
|
/* Emit any pending EOBRUN and the BE correction bits */ |
|
emit_eobrun(entropy); |
|
|
|
/* Count/emit Huffman symbol for run length / number of bits */ |
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
|
|
|
/* Emit output bit for newly-nonzero coef */ |
|
temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; |
|
emit_bits_e(entropy, (unsigned int) temp, 1); |
|
|
|
/* Emit buffered correction bits that must be associated with this code */ |
|
emit_buffered_bits(entropy, BR_buffer, BR); |
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
|
BR = 0; |
|
r = 0; /* reset zero run length */ |
|
} |
|
|
|
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
|
entropy->EOBRUN++; /* count an EOB */ |
|
entropy->BE += BR; /* concat my correction bits to older ones */ |
|
/* We force out the EOB if we risk either: |
|
* 1. overflow of the EOB counter; |
|
* 2. overflow of the correction bit buffer during the next MCU. |
|
*/ |
|
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
|
emit_eobrun(entropy); |
|
} |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* Encode a single block's worth of coefficients */ |
|
|
|
LOCAL(boolean) |
|
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
|
c_derived_tbl *dctbl, c_derived_tbl *actbl) |
|
{ |
|
register int temp, temp2; |
|
register int nbits; |
|
register int r, k; |
|
int Se = state->cinfo->lim_Se; |
|
const int * natural_order = state->cinfo->natural_order; |
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */ |
|
|
|
temp = temp2 = block[0] - last_dc_val; |
|
|
|
if (temp < 0) { |
|
temp = -temp; /* temp is abs value of input */ |
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */ |
|
/* This code assumes we are on a two's complement machine */ |
|
temp2--; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 0; |
|
while (temp) { |
|
nbits++; |
|
temp >>= 1; |
|
} |
|
/* Check for out-of-range coefficient values. |
|
* Since we're encoding a difference, the range limit is twice as much. |
|
*/ |
|
if (nbits > MAX_COEF_BITS+1) |
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Emit the Huffman-coded symbol for the number of bits */ |
|
if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
|
return FALSE; |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
if (nbits) /* emit_bits rejects calls with size 0 */ |
|
if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
|
return FALSE; |
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
|
|
for (k = 1; k <= Se; k++) { |
|
if ((temp2 = block[natural_order[k]]) == 0) { |
|
r++; |
|
} else { |
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
|
while (r > 15) { |
|
if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
|
return FALSE; |
|
r -= 16; |
|
} |
|
|
|
temp = temp2; |
|
if (temp < 0) { |
|
temp = -temp; /* temp is abs value of input */ |
|
/* This code assumes we are on a two's complement machine */ |
|
temp2--; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 1; /* there must be at least one 1 bit */ |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* Check for out-of-range coefficient values */ |
|
if (nbits > MAX_COEF_BITS) |
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Emit Huffman symbol for run length / number of bits */ |
|
temp = (r << 4) + nbits; |
|
if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) |
|
return FALSE; |
|
|
|
/* Emit that number of bits of the value, if positive, */ |
|
/* or the complement of its magnitude, if negative. */ |
|
if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
|
return FALSE; |
|
|
|
r = 0; |
|
} |
|
} |
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */ |
|
if (r > 0) |
|
if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) |
|
return FALSE; |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Encode and output one MCU's worth of Huffman-compressed coefficients. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
working_state state; |
|
int blkn, ci; |
|
jpeg_component_info * compptr; |
|
|
|
/* Load up working state */ |
|
state.next_output_byte = cinfo->dest->next_output_byte; |
|
state.free_in_buffer = cinfo->dest->free_in_buffer; |
|
ASSIGN_STATE(state.cur, entropy->saved); |
|
state.cinfo = cinfo; |
|
|
|
/* Emit restart marker if needed */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) |
|
if (! emit_restart_s(&state, entropy->next_restart_num)) |
|
return FALSE; |
|
} |
|
|
|
/* Encode the MCU data blocks */ |
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
if (! encode_one_block(&state, |
|
MCU_data[blkn][0], state.cur.last_dc_val[ci], |
|
entropy->dc_derived_tbls[compptr->dc_tbl_no], |
|
entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
|
return FALSE; |
|
/* Update last_dc_val */ |
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
|
} |
|
|
|
/* Completed MCU, so update state */ |
|
cinfo->dest->next_output_byte = state.next_output_byte; |
|
cinfo->dest->free_in_buffer = state.free_in_buffer; |
|
ASSIGN_STATE(entropy->saved, state.cur); |
|
|
|
/* Update restart-interval state too */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num++; |
|
entropy->next_restart_num &= 7; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Finish up at the end of a Huffman-compressed scan. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_huff (j_compress_ptr cinfo) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
working_state state; |
|
|
|
if (cinfo->progressive_mode) { |
|
entropy->next_output_byte = cinfo->dest->next_output_byte; |
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
|
|
|
/* Flush out any buffered data */ |
|
emit_eobrun(entropy); |
|
flush_bits_e(entropy); |
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte; |
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
|
} else { |
|
/* Load up working state ... flush_bits needs it */ |
|
state.next_output_byte = cinfo->dest->next_output_byte; |
|
state.free_in_buffer = cinfo->dest->free_in_buffer; |
|
ASSIGN_STATE(state.cur, entropy->saved); |
|
state.cinfo = cinfo; |
|
|
|
/* Flush out the last data */ |
|
if (! flush_bits_s(&state)) |
|
ERREXIT(cinfo, JERR_CANT_SUSPEND); |
|
|
|
/* Update state */ |
|
cinfo->dest->next_output_byte = state.next_output_byte; |
|
cinfo->dest->free_in_buffer = state.free_in_buffer; |
|
ASSIGN_STATE(entropy->saved, state.cur); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Huffman coding optimization. |
|
* |
|
* We first scan the supplied data and count the number of uses of each symbol |
|
* that is to be Huffman-coded. (This process MUST agree with the code above.) |
|
* Then we build a Huffman coding tree for the observed counts. |
|
* Symbols which are not needed at all for the particular image are not |
|
* assigned any code, which saves space in the DHT marker as well as in |
|
* the compressed data. |
|
*/ |
|
|
|
|
|
/* Process a single block's worth of coefficients */ |
|
|
|
LOCAL(void) |
|
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
|
long dc_counts[], long ac_counts[]) |
|
{ |
|
register int temp; |
|
register int nbits; |
|
register int r, k; |
|
int Se = cinfo->lim_Se; |
|
const int * natural_order = cinfo->natural_order; |
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */ |
|
|
|
temp = block[0] - last_dc_val; |
|
if (temp < 0) |
|
temp = -temp; |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 0; |
|
while (temp) { |
|
nbits++; |
|
temp >>= 1; |
|
} |
|
/* Check for out-of-range coefficient values. |
|
* Since we're encoding a difference, the range limit is twice as much. |
|
*/ |
|
if (nbits > MAX_COEF_BITS+1) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count the Huffman symbol for the number of bits */ |
|
dc_counts[nbits]++; |
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */ |
|
|
|
r = 0; /* r = run length of zeros */ |
|
|
|
for (k = 1; k <= Se; k++) { |
|
if ((temp = block[natural_order[k]]) == 0) { |
|
r++; |
|
} else { |
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
|
while (r > 15) { |
|
ac_counts[0xF0]++; |
|
r -= 16; |
|
} |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
if (temp < 0) |
|
temp = -temp; |
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */ |
|
nbits = 1; /* there must be at least one 1 bit */ |
|
while ((temp >>= 1)) |
|
nbits++; |
|
/* Check for out-of-range coefficient values */ |
|
if (nbits > MAX_COEF_BITS) |
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
|
|
|
/* Count Huffman symbol for run length / number of bits */ |
|
ac_counts[(r << 4) + nbits]++; |
|
|
|
r = 0; |
|
} |
|
} |
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */ |
|
if (r > 0) |
|
ac_counts[0]++; |
|
} |
|
|
|
|
|
/* |
|
* Trial-encode one MCU's worth of Huffman-compressed coefficients. |
|
* No data is actually output, so no suspension return is possible. |
|
*/ |
|
|
|
METHODDEF(boolean) |
|
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
int blkn, ci; |
|
jpeg_component_info * compptr; |
|
|
|
/* Take care of restart intervals if needed */ |
|
if (cinfo->restart_interval) { |
|
if (entropy->restarts_to_go == 0) { |
|
/* Re-initialize DC predictions to 0 */ |
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
|
entropy->saved.last_dc_val[ci] = 0; |
|
/* Update restart state */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
} |
|
entropy->restarts_to_go--; |
|
} |
|
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
|
ci = cinfo->MCU_membership[blkn]; |
|
compptr = cinfo->cur_comp_info[ci]; |
|
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
|
entropy->dc_count_ptrs[compptr->dc_tbl_no], |
|
entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
|
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
|
} |
|
|
|
return TRUE; |
|
} |
|
|
|
|
|
/* |
|
* Generate the best Huffman code table for the given counts, fill htbl. |
|
* |
|
* The JPEG standard requires that no symbol be assigned a codeword of all |
|
* one bits (so that padding bits added at the end of a compressed segment |
|
* can't look like a valid code). Because of the canonical ordering of |
|
* codewords, this just means that there must be an unused slot in the |
|
* longest codeword length category. Section K.2 of the JPEG spec suggests |
|
* reserving such a slot by pretending that symbol 256 is a valid symbol |
|
* with count 1. In theory that's not optimal; giving it count zero but |
|
* including it in the symbol set anyway should give a better Huffman code. |
|
* But the theoretically better code actually seems to come out worse in |
|
* practice, because it produces more all-ones bytes (which incur stuffed |
|
* zero bytes in the final file). In any case the difference is tiny. |
|
* |
|
* The JPEG standard requires Huffman codes to be no more than 16 bits long. |
|
* If some symbols have a very small but nonzero probability, the Huffman tree |
|
* must be adjusted to meet the code length restriction. We currently use |
|
* the adjustment method suggested in JPEG section K.2. This method is *not* |
|
* optimal; it may not choose the best possible limited-length code. But |
|
* typically only very-low-frequency symbols will be given less-than-optimal |
|
* lengths, so the code is almost optimal. Experimental comparisons against |
|
* an optimal limited-length-code algorithm indicate that the difference is |
|
* microscopic --- usually less than a hundredth of a percent of total size. |
|
* So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
|
*/ |
|
|
|
LOCAL(void) |
|
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
|
{ |
|
#define MAX_CLEN 32 /* assumed maximum initial code length */ |
|
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
|
int codesize[257]; /* codesize[k] = code length of symbol k */ |
|
int others[257]; /* next symbol in current branch of tree */ |
|
int c1, c2, i, j; |
|
UINT8 *p; |
|
long v; |
|
|
|
freq[256] = 1; /* make sure 256 has a nonzero count */ |
|
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
|
* that no real symbol is given code-value of all ones, because 256 |
|
* will be placed last in the largest codeword category. |
|
* In the symbol list build procedure this element serves as sentinel |
|
* for the zero run loop. |
|
*/ |
|
|
|
#ifndef DONT_USE_FANCY_HUFF_OPT |
|
|
|
/* Build list of symbols sorted in order of descending frequency */ |
|
/* This approach has several benefits (thank to John Korejwa for the idea): |
|
* 1. |
|
* If a codelength category is split during the length limiting procedure |
|
* below, the feature that more frequent symbols are assigned shorter |
|
* codewords remains valid for the adjusted code. |
|
* 2. |
|
* To reduce consecutive ones in a Huffman data stream (thus reducing the |
|
* number of stuff bytes in JPEG) it is preferable to follow 0 branches |
|
* (and avoid 1 branches) as much as possible. This is easily done by |
|
* assigning symbols to leaves of the Huffman tree in order of decreasing |
|
* frequency, with no secondary sort based on codelengths. |
|
* 3. |
|
* The symbol list can be built independently from the assignment of code |
|
* lengths by the Huffman procedure below. |
|
* Note: The symbol list build procedure must be performed first, because |
|
* the Huffman procedure assigning the codelengths clobbers the frequency |
|
* counts! |
|
*/ |
|
|
|
/* Here we use the others array as a linked list of nonzero frequencies |
|
* to be sorted. Already sorted elements are removed from the list. |
|
*/ |
|
|
|
/* Building list */ |
|
|
|
/* This item does not correspond to a valid symbol frequency and is used |
|
* as starting index. |
|
*/ |
|
j = 256; |
|
|
|
for (i = 0;; i++) { |
|
if (freq[i] == 0) /* skip zero frequencies */ |
|
continue; |
|
if (i > 255) |
|
break; |
|
others[j] = i; /* this symbol value */ |
|
j = i; /* previous symbol value */ |
|
} |
|
others[j] = -1; /* mark end of list */ |
|
|
|
/* Sorting list */ |
|
|
|
p = htbl->huffval; |
|
while ((c1 = others[256]) >= 0) { |
|
v = freq[c1]; |
|
i = c1; /* first symbol value */ |
|
j = 256; /* pseudo symbol value for starting index */ |
|
while ((c2 = others[c1]) >= 0) { |
|
if (freq[c2] > v) { |
|
v = freq[c2]; |
|
i = c2; /* this symbol value */ |
|
j = c1; /* previous symbol value */ |
|
} |
|
c1 = c2; |
|
} |
|
others[j] = others[i]; /* remove this symbol i from list */ |
|
*p++ = (UINT8) i; |
|
} |
|
|
|
#endif /* DONT_USE_FANCY_HUFF_OPT */ |
|
|
|
/* This algorithm is explained in section K.2 of the JPEG standard */ |
|
|
|
MEMZERO(bits, SIZEOF(bits)); |
|
MEMZERO(codesize, SIZEOF(codesize)); |
|
for (i = 0; i < 257; i++) |
|
others[i] = -1; /* init links to empty */ |
|
|
|
/* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
|
|
|
for (;;) { |
|
/* Find the smallest nonzero frequency, set c1 = its symbol */ |
|
/* In case of ties, take the larger symbol number */ |
|
c1 = -1; |
|
v = 1000000000L; |
|
for (i = 0; i <= 256; i++) { |
|
if (freq[i] && freq[i] <= v) { |
|
v = freq[i]; |
|
c1 = i; |
|
} |
|
} |
|
|
|
/* Find the next smallest nonzero frequency, set c2 = its symbol */ |
|
/* In case of ties, take the larger symbol number */ |
|
c2 = -1; |
|
v = 1000000000L; |
|
for (i = 0; i <= 256; i++) { |
|
if (freq[i] && freq[i] <= v && i != c1) { |
|
v = freq[i]; |
|
c2 = i; |
|
} |
|
} |
|
|
|
/* Done if we've merged everything into one frequency */ |
|
if (c2 < 0) |
|
break; |
|
|
|
/* Else merge the two counts/trees */ |
|
freq[c1] += freq[c2]; |
|
freq[c2] = 0; |
|
|
|
/* Increment the codesize of everything in c1's tree branch */ |
|
codesize[c1]++; |
|
while (others[c1] >= 0) { |
|
c1 = others[c1]; |
|
codesize[c1]++; |
|
} |
|
|
|
others[c1] = c2; /* chain c2 onto c1's tree branch */ |
|
|
|
/* Increment the codesize of everything in c2's tree branch */ |
|
codesize[c2]++; |
|
while (others[c2] >= 0) { |
|
c2 = others[c2]; |
|
codesize[c2]++; |
|
} |
|
} |
|
|
|
/* Now count the number of symbols of each code length */ |
|
for (i = 0; i <= 256; i++) { |
|
if (codesize[i]) { |
|
/* The JPEG standard seems to think that this can't happen, */ |
|
/* but I'm paranoid... */ |
|
if (codesize[i] > MAX_CLEN) |
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
|
|
|
bits[codesize[i]]++; |
|
} |
|
} |
|
|
|
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
|
* Huffman procedure assigned any such lengths, we must adjust the coding. |
|
* Here is what the JPEG spec says about how this next bit works: |
|
* Since symbols are paired for the longest Huffman code, the symbols are |
|
* removed from this length category two at a time. The prefix for the pair |
|
* (which is one bit shorter) is allocated to one of the pair; then, |
|
* skipping the BITS entry for that prefix length, a code word from the next |
|
* shortest nonzero BITS entry is converted into a prefix for two code words |
|
* one bit longer. |
|
*/ |
|
|
|
for (i = MAX_CLEN; i > 16; i--) { |
|
while (bits[i] > 0) { |
|
j = i - 2; /* find length of new prefix to be used */ |
|
while (bits[j] == 0) { |
|
if (j == 0) |
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
|
j--; |
|
} |
|
|
|
bits[i] -= 2; /* remove two symbols */ |
|
bits[i-1]++; /* one goes in this length */ |
|
bits[j+1] += 2; /* two new symbols in this length */ |
|
bits[j]--; /* symbol of this length is now a prefix */ |
|
} |
|
} |
|
|
|
/* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
|
while (bits[i] == 0) /* find largest codelength still in use */ |
|
i--; |
|
bits[i]--; |
|
|
|
/* Return final symbol counts (only for lengths 0..16) */ |
|
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
|
|
|
#ifdef DONT_USE_FANCY_HUFF_OPT |
|
|
|
/* Return a list of the symbols sorted by code length */ |
|
/* Note: Due to the codelength changes made above, it can happen |
|
* that more frequent symbols are assigned longer codewords. |
|
*/ |
|
p = htbl->huffval; |
|
for (i = 1; i <= MAX_CLEN; i++) { |
|
for (j = 0; j <= 255; j++) { |
|
if (codesize[j] == i) { |
|
*p++ = (UINT8) j; |
|
} |
|
} |
|
} |
|
|
|
#endif /* DONT_USE_FANCY_HUFF_OPT */ |
|
|
|
/* Set sent_table FALSE so updated table will be written to JPEG file. */ |
|
htbl->sent_table = FALSE; |
|
} |
|
|
|
|
|
/* |
|
* Finish up a statistics-gathering pass and create the new Huffman tables. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_gather (j_compress_ptr cinfo) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
int ci, tbl; |
|
jpeg_component_info * compptr; |
|
JHUFF_TBL **htblptr; |
|
boolean did_dc[NUM_HUFF_TBLS]; |
|
boolean did_ac[NUM_HUFF_TBLS]; |
|
|
|
if (cinfo->progressive_mode) |
|
/* Flush out buffered data (all we care about is counting the EOB symbol) */ |
|
emit_eobrun(entropy); |
|
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once |
|
* per table, because it clobbers the input frequency counts! |
|
*/ |
|
MEMZERO(did_dc, SIZEOF(did_dc)); |
|
MEMZERO(did_ac, SIZEOF(did_ac)); |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
/* DC needs no table for refinement scan */ |
|
if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
|
tbl = compptr->dc_tbl_no; |
|
if (! did_dc[tbl]) { |
|
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
|
if (*htblptr == NULL) |
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); |
|
did_dc[tbl] = TRUE; |
|
} |
|
} |
|
/* AC needs no table when not present */ |
|
if (cinfo->Se) { |
|
tbl = compptr->ac_tbl_no; |
|
if (! did_ac[tbl]) { |
|
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
|
if (*htblptr == NULL) |
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); |
|
did_ac[tbl] = TRUE; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Initialize for a Huffman-compressed scan. |
|
* If gather_statistics is TRUE, we do not output anything during the scan, |
|
* just count the Huffman symbols used and generate Huffman code tables. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
|
{ |
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
|
int ci, tbl; |
|
jpeg_component_info * compptr; |
|
|
|
if (gather_statistics) |
|
entropy->pub.finish_pass = finish_pass_gather; |
|
else |
|
entropy->pub.finish_pass = finish_pass_huff; |
|
|
|
if (cinfo->progressive_mode) { |
|
entropy->cinfo = cinfo; |
|
entropy->gather_statistics = gather_statistics; |
|
|
|
/* We assume jcmaster.c already validated the scan parameters. */ |
|
|
|
/* Select execution routine */ |
|
if (cinfo->Ah == 0) { |
|
if (cinfo->Ss == 0) |
|
entropy->pub.encode_mcu = encode_mcu_DC_first; |
|
else |
|
entropy->pub.encode_mcu = encode_mcu_AC_first; |
|
} else { |
|
if (cinfo->Ss == 0) |
|
entropy->pub.encode_mcu = encode_mcu_DC_refine; |
|
else { |
|
entropy->pub.encode_mcu = encode_mcu_AC_refine; |
|
/* AC refinement needs a correction bit buffer */ |
|
if (entropy->bit_buffer == NULL) |
|
entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); |
|
} |
|
} |
|
|
|
/* Initialize AC stuff */ |
|
entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; |
|
entropy->EOBRUN = 0; |
|
entropy->BE = 0; |
|
} else { |
|
if (gather_statistics) |
|
entropy->pub.encode_mcu = encode_mcu_gather; |
|
else |
|
entropy->pub.encode_mcu = encode_mcu_huff; |
|
} |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
/* DC needs no table for refinement scan */ |
|
if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
|
tbl = compptr->dc_tbl_no; |
|
if (gather_statistics) { |
|
/* Check for invalid table index */ |
|
/* (make_c_derived_tbl does this in the other path) */ |
|
if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
|
/* Allocate and zero the statistics tables */ |
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
|
if (entropy->dc_count_ptrs[tbl] == NULL) |
|
entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
|
MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); |
|
} else { |
|
/* Compute derived values for Huffman tables */ |
|
/* We may do this more than once for a table, but it's not expensive */ |
|
jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, |
|
& entropy->dc_derived_tbls[tbl]); |
|
} |
|
/* Initialize DC predictions to 0 */ |
|
entropy->saved.last_dc_val[ci] = 0; |
|
} |
|
/* AC needs no table when not present */ |
|
if (cinfo->Se) { |
|
tbl = compptr->ac_tbl_no; |
|
if (gather_statistics) { |
|
if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
|
if (entropy->ac_count_ptrs[tbl] == NULL) |
|
entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
|
MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); |
|
} else { |
|
jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, |
|
& entropy->ac_derived_tbls[tbl]); |
|
} |
|
} |
|
} |
|
|
|
/* Initialize bit buffer to empty */ |
|
entropy->saved.put_buffer = 0; |
|
entropy->saved.put_bits = 0; |
|
|
|
/* Initialize restart stuff */ |
|
entropy->restarts_to_go = cinfo->restart_interval; |
|
entropy->next_restart_num = 0; |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for Huffman entropy encoding. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_huff_encoder (j_compress_ptr cinfo) |
|
{ |
|
huff_entropy_ptr entropy; |
|
int i; |
|
|
|
entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); |
|
cinfo->entropy = &entropy->pub; |
|
entropy->pub.start_pass = start_pass_huff; |
|
|
|
/* Mark tables unallocated */ |
|
for (i = 0; i < NUM_HUFF_TBLS; i++) { |
|
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
|
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
|
} |
|
|
|
if (cinfo->progressive_mode) |
|
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
|
}
|
|
|